samchain commited on
Commit
d798ce3
·
1 Parent(s): ebe85c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -2
README.md CHANGED
@@ -15,7 +15,9 @@ language:
15
 
16
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
17
 
18
- <!--- Describe your model here -->
 
 
19
 
20
  ## Usage (Sentence-Transformers)
21
 
@@ -40,7 +42,10 @@ print(embeddings)
40
 
41
  ## Evaluation Results
42
 
43
- <!--- Describe how your model was evaluated -->
 
 
 
44
 
45
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=WikiMedical_sent_bert)
46
 
 
15
 
16
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
17
 
18
+ WikiMedical_sent_bert is based on the 'all-MiniLM-L6-v2' sentence-transformers backbone and has been trained on the [WikiMedical_sentence_simialrity](https://huggingface.co/datasets/nuvocare/WikiMedical_sentence_similarity) dataset.
19
+
20
+ The model is able to predict whether two texts are realted to the same wikipedia page, with only medical topic.
21
 
22
  ## Usage (Sentence-Transformers)
23
 
 
42
 
43
  ## Evaluation Results
44
 
45
+ The model is evaluated on the test set of [WikiMedical_sentence_simialrity](https://huggingface.co/datasets/nuvocare/WikiMedical_sentence_similarity).
46
+ It achieves a :
47
+ - cosine spearman score of 0.86
48
+ - cosine pearson score of 0.94
49
 
50
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=WikiMedical_sent_bert)
51