# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility to convert weights to safetensors.""" import argparse import torch from .configuration_embed1 import CosmosEmbed1Config from .modeling_embed1 import CosmosEmbed1 def parse_args(): parser = argparse.ArgumentParser(description="Save model weights with optional format conversion and sharding.") parser.add_argument("--input_weights", type=str, required=True, help="Path to the input .pt weights file") parser.add_argument( "--output_weights", type=str, required=True, help="Path to the output directory where safetensors weights will be saved", ) return parser.parse_args() def main(): args = parse_args() model = CosmosEmbed1(CosmosEmbed1Config()).to("cuda", dtype=torch.bfloat16) # remove tensor sharing model.qformer.cls.predictions.decoder.weight = torch.nn.Parameter( model.qformer.cls.predictions.decoder.weight.clone() ) model.qformer.bert.embeddings.word_embeddings.weight = torch.nn.Parameter( model.qformer.bert.embeddings.word_embeddings.weight.clone() ) model.qformer.cls.predictions.decoder.bias = torch.nn.Parameter(model.qformer.cls.predictions.decoder.bias.clone()) model.qformer.cls.predictions.bias = torch.nn.Parameter(model.qformer.cls.predictions.bias.clone()) with open(args.input_weights, "rb") as fp: state_dict = torch.load(fp) model.load_state_dict(state_dict, strict=True) model.save_pretrained( args.output_weights, safe_serialization=True, max_shard_size="500MB", ) if __name__ == "__main__": main()