zhiyucheng commited on
Commit
f869420
·
1 Parent(s): 9a6f0f4

add ckpt and artifacts

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +123 -3
  2. config.json +70 -0
  3. configuration_deepseek.py +210 -0
  4. hf_quant_config.json +258 -0
  5. model-00001-of-00080.safetensors +3 -0
  6. model-00002-of-00080.safetensors +3 -0
  7. model-00003-of-00080.safetensors +3 -0
  8. model-00004-of-00080.safetensors +3 -0
  9. model-00005-of-00080.safetensors +3 -0
  10. model-00006-of-00080.safetensors +3 -0
  11. model-00007-of-00080.safetensors +3 -0
  12. model-00008-of-00080.safetensors +3 -0
  13. model-00009-of-00080.safetensors +3 -0
  14. model-00010-of-00080.safetensors +3 -0
  15. model-00011-of-00080.safetensors +3 -0
  16. model-00012-of-00080.safetensors +3 -0
  17. model-00013-of-00080.safetensors +3 -0
  18. model-00014-of-00080.safetensors +3 -0
  19. model-00015-of-00080.safetensors +3 -0
  20. model-00016-of-00080.safetensors +3 -0
  21. model-00017-of-00080.safetensors +3 -0
  22. model-00018-of-00080.safetensors +3 -0
  23. model-00019-of-00080.safetensors +3 -0
  24. model-00020-of-00080.safetensors +3 -0
  25. model-00021-of-00080.safetensors +3 -0
  26. model-00022-of-00080.safetensors +3 -0
  27. model-00023-of-00080.safetensors +3 -0
  28. model-00024-of-00080.safetensors +3 -0
  29. model-00025-of-00080.safetensors +3 -0
  30. model-00026-of-00080.safetensors +3 -0
  31. model-00027-of-00080.safetensors +3 -0
  32. model-00028-of-00080.safetensors +3 -0
  33. model-00029-of-00080.safetensors +3 -0
  34. model-00030-of-00080.safetensors +3 -0
  35. model-00031-of-00080.safetensors +3 -0
  36. model-00032-of-00080.safetensors +3 -0
  37. model-00033-of-00080.safetensors +3 -0
  38. model-00034-of-00080.safetensors +3 -0
  39. model-00035-of-00080.safetensors +3 -0
  40. model-00036-of-00080.safetensors +3 -0
  41. model-00037-of-00080.safetensors +3 -0
  42. model-00038-of-00080.safetensors +3 -0
  43. model-00039-of-00080.safetensors +3 -0
  44. model-00040-of-00080.safetensors +3 -0
  45. model-00041-of-00080.safetensors +3 -0
  46. model-00042-of-00080.safetensors +3 -0
  47. model-00043-of-00080.safetensors +3 -0
  48. model-00044-of-00080.safetensors +3 -0
  49. model-00045-of-00080.safetensors +3 -0
  50. model-00046-of-00080.safetensors +3 -0
README.md CHANGED
@@ -1,3 +1,123 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ base_model:
4
+ - deepseek-ai/DeepSeek-V3-0324
5
+ license: mit
6
+ ---
7
+ # Model Overview
8
+
9
+ ## Description:
10
+ The NVIDIA DeepSeek V3-0324 FP4 model is the quantized version of the DeepSeek AI's DeepSeek V3-0324 model, which is an auto-regressive language model that uses an optimized transformer architecture. For more information, please check [here](https://huggingface.co/deepseek-ai/DeepSeek-V3-0324). The NVIDIA DeepSeek V3-0324 FP4 model is quantized with [TensorRT Model Optimizer](https://github.com/NVIDIA/TensorRT-Model-Optimizer).
11
+
12
+ This model is ready for commercial/non-commercial use. <br>
13
+
14
+ ## Third-Party Community Consideration
15
+ This model is not owned or developed by NVIDIA. This model has been developed and built to a third-party’s requirements for this application and use case; see link to Non-NVIDIA [(DeepSeek V3-0324) Model Card](https://huggingface.co/deepseek-ai/DeepSeek-V3-0324).
16
+
17
+ ### License/Terms of Use:
18
+ [MIT](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md)
19
+
20
+
21
+ ## Model Architecture:
22
+ **Architecture Type:** Transformers <br>
23
+ **Network Architecture:** DeepSeek V3-0324 <br>
24
+
25
+ ## Input:
26
+ **Input Type(s):** Text <br>
27
+ **Input Format(s):** String <br>
28
+ **Input Parameters:** 1D (One Dimensional): Sequences <br>
29
+ **Other Properties Related to Input:** Context length up to 128K <br>
30
+
31
+ ## Output:
32
+ **Output Type(s):** Text <br>
33
+ **Output Format:** String <br>
34
+ **Output Parameters:** 1D (One Dimensional): Sequences <br>
35
+ **Other Properties Related to Output:** N/A <br>
36
+
37
+ ## Software Integration:
38
+ **Supported Runtime Engine(s):** <br>
39
+ * Tensor(RT)-LLM <br>
40
+
41
+ **Supported Hardware Microarchitecture Compatibility:** <br>
42
+ * NVIDIA Blackwell <br>
43
+
44
+ **Preferred Operating System(s):** <br>
45
+ * Linux <br>
46
+
47
+ ## Model Version(s):
48
+ The model is quantized with nvidia-modelopt **v0.27.0** <br>
49
+
50
+ ## Datasets:
51
+ * Calibration Dataset: [cnn_dailymail](https://huggingface.co/datasets/abisee/cnn_dailymail) <br>
52
+ ** Data collection method: Automated. <br>
53
+ ** Labeling method: Unknown. <br>
54
+ * Evaluation Dataset: [MMLU](https://github.com/hendrycks/test) <br>
55
+ ** Data collection method: Unknown. <br>
56
+ ** Labeling method: N/A. <br>
57
+
58
+
59
+ ## Inference:
60
+ **Engine:** Tensor(RT)-LLM <br>
61
+ **Test Hardware:** B200 <br>
62
+
63
+ ## Post Training Quantization
64
+ This model was obtained by quantizing the weights and activations of DeepSeek V3-0324 to FP4 data type, ready for inference with TensorRT-LLM. Only the weights and activations of the linear operators within transformers blocks are quantized. This optimization reduces the number of bits per parameter from 8 to 4, reducing the disk size and GPU memory requirements by approximately 1.6x.
65
+
66
+ ## Usage
67
+
68
+ ### Deploy with TensorRT-LLM
69
+
70
+ To deploy the quantized FP4 checkpoint with [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM) LLM API, follow the sample codes below (you need 8xB200 GPU and TensorRT LLM built from source with the latest main branch):
71
+
72
+ * LLM API sample usage:
73
+ ```
74
+ from tensorrt_llm import SamplingParams
75
+ from tensorrt_llm._torch import LLM
76
+
77
+ def main():
78
+
79
+ prompts = [
80
+ "Hello, my name is",
81
+ "The president of the United States is",
82
+ "The capital of France is",
83
+ "The future of AI is",
84
+ ]
85
+ sampling_params = SamplingParams(max_tokens=32)
86
+
87
+ llm = LLM(model="nvidia/DeepSeek-V3-0324-FP4", tensor_parallel_size=8, enable_attention_dp=True)
88
+
89
+ outputs = llm.generate(prompts, sampling_params)
90
+
91
+ # Print the outputs.
92
+ for output in outputs:
93
+ prompt = output.prompt
94
+ generated_text = output.outputs[0].text
95
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
96
+
97
+
98
+ # The entry point of the program need to be protected for spawning processes.
99
+ if __name__ == '__main__':
100
+ main()
101
+
102
+ ```
103
+
104
+ ## Benchmarks
105
+
106
+ This section compares the accuracy of the original DeepSeek V3-0324 model with our FP4-quantized version across benchmarks.
107
+
108
+ | Benchmark | DeepSeek V3-0324<sup>1</sup> | DeepSeek V3-0324-FP4 |
109
+ | :---: | :---: | :---: |
110
+ | MMMU Pro | 82 | 82.9 |
111
+ | GPQA Diamond | 66 | 67.2 |
112
+ | LiveCodeBench | 41 | 52.23 |
113
+ | AIME 2024 | 52 | 49.3 |
114
+ | MATH-500 | 94 | 94.4 |
115
+ | MGSM | 92 | 92.8 |
116
+
117
+ > *<sup>1</sup> Reference scores for DeepSeek V3-0324 sourced from [artificialanalysis](https://artificialanalysis.ai/models/deepseek-v3-0324).*
118
+
119
+ ## Ethical Considerations
120
+
121
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
122
+
123
+ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
config.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DeepseekV3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_deepseek.DeepseekV3Config",
9
+ "AutoModel": "modeling_deepseek.DeepseekV3Model",
10
+ "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
11
+ },
12
+ "aux_loss_alpha": 0.001,
13
+ "bos_token_id": 0,
14
+ "eos_token_id": 1,
15
+ "ep_size": 1,
16
+ "first_k_dense_replace": 3,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 7168,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 18432,
21
+ "kv_lora_rank": 512,
22
+ "max_position_embeddings": 163840,
23
+ "model_type": "deepseek_v3",
24
+ "moe_intermediate_size": 2048,
25
+ "moe_layer_freq": 1,
26
+ "n_group": 8,
27
+ "n_routed_experts": 256,
28
+ "n_shared_experts": 1,
29
+ "norm_topk_prob": true,
30
+ "num_attention_heads": 128,
31
+ "num_experts_per_tok": 8,
32
+ "num_hidden_layers": 61,
33
+ "num_key_value_heads": 128,
34
+ "num_nextn_predict_layers": 1,
35
+ "pretraining_tp": 1,
36
+ "q_lora_rank": 1536,
37
+ "qk_nope_head_dim": 128,
38
+ "qk_rope_head_dim": 64,
39
+ "quantization_config": {
40
+ "activation_scheme": "dynamic",
41
+ "fmt": "e4m3",
42
+ "quant_method": "fp8",
43
+ "weight_block_size": [
44
+ 128,
45
+ 128
46
+ ]
47
+ },
48
+ "rms_norm_eps": 1e-06,
49
+ "rope_scaling": {
50
+ "beta_fast": 32,
51
+ "beta_slow": 1,
52
+ "factor": 40,
53
+ "mscale": 1.0,
54
+ "mscale_all_dim": 1.0,
55
+ "original_max_position_embeddings": 4096,
56
+ "type": "yarn"
57
+ },
58
+ "rope_theta": 10000,
59
+ "routed_scaling_factor": 2.5,
60
+ "scoring_func": "sigmoid",
61
+ "seq_aux": true,
62
+ "tie_word_embeddings": false,
63
+ "topk_group": 4,
64
+ "topk_method": "noaux_tc",
65
+ "torch_dtype": "bfloat16",
66
+ "transformers_version": "4.46.3",
67
+ "use_cache": true,
68
+ "v_head_dim": 128,
69
+ "vocab_size": 129280
70
+ }
configuration_deepseek.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV3Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V3.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 129280):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV3Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_nextn_predict_layers (`int`, *optional*, defaults to 1):
30
+ Number of nextn predict layers in the DeepSeekV3 Model.
31
+ num_attention_heads (`int`, *optional*, defaults to 32):
32
+ Number of attention heads for each attention layer in the Transformer decoder.
33
+ n_shared_experts (`int`, *optional*, defaults to None):
34
+ Number of shared experts, None means dense model.
35
+ n_routed_experts (`int`, *optional*, defaults to None):
36
+ Number of routed experts, None means dense model.
37
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
38
+ Scaling factor or routed experts.
39
+ topk_method (`str`, *optional*, defaults to `gready`):
40
+ Topk method used in routed gate.
41
+ n_group (`int`, *optional*, defaults to None):
42
+ Number of groups for routed experts.
43
+ topk_group (`int`, *optional*, defaults to None):
44
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
45
+ num_experts_per_tok (`int`, *optional*, defaults to None):
46
+ Number of selected experts, None means dense model.
47
+ moe_layer_freq (`int`, *optional*, defaults to 1):
48
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
49
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
50
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
51
+ \--k dense layers--/
52
+ norm_topk_prob (`bool`, *optional*, defaults to False):
53
+ Whether to normalize the weights of the routed experts.
54
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
55
+ Method of computing expert weights.
56
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
57
+ Auxiliary loss weight coefficient.
58
+ seq_aux = (`bool`, *optional*, defaults to True):
59
+ Whether to compute the auxiliary loss for each individual sample.
60
+ num_key_value_heads (`int`, *optional*):
61
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
62
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
63
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
64
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
65
+ by meanpooling all the original heads within that group. For more details checkout [this
66
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
67
+ `num_attention_heads`.
68
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
69
+ The non-linear activation function (function or string) in the decoder.
70
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
71
+ The maximum sequence length that this model might ever be used with.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
75
+ The epsilon used by the rms normalization layers.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`.
79
+ pad_token_id (`int`, *optional*):
80
+ Padding token id.
81
+ bos_token_id (`int`, *optional*, defaults to 1):
82
+ Beginning of stream token id.
83
+ eos_token_id (`int`, *optional*, defaults to 2):
84
+ End of stream token id.
85
+ pretraining_tp (`int`, *optional*, defaults to 1):
86
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
87
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
88
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
89
+ issue](https://github.com/pytorch/pytorch/issues/76232).
90
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
91
+ Whether to tie weight embeddings
92
+ rope_theta (`float`, *optional*, defaults to 10000.0):
93
+ The base period of the RoPE embeddings.
94
+ rope_scaling (`Dict`, *optional*):
95
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
96
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
97
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
98
+ `max_position_embeddings` to the expected new maximum.
99
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
100
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
101
+ attention_dropout (`float`, *optional*, defaults to 0.0):
102
+ The dropout ratio for the attention probabilities.
103
+
104
+ ```python
105
+ >>> from transformers import DeepseekV3Model, DeepseekV3Config
106
+
107
+ >>> # Initializing a Deepseek-V3 style configuration
108
+ >>> configuration = DeepseekV3Config()
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "deepseek_v3"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=129280,
120
+ hidden_size=7168,
121
+ intermediate_size=18432,
122
+ moe_intermediate_size = 2048,
123
+ num_hidden_layers=61,
124
+ num_nextn_predict_layers=1,
125
+ num_attention_heads=128,
126
+ num_key_value_heads=128,
127
+ n_shared_experts = 1,
128
+ n_routed_experts = 256,
129
+ ep_size = 1,
130
+ routed_scaling_factor = 2.5,
131
+ kv_lora_rank = 512,
132
+ q_lora_rank = 1536,
133
+ qk_rope_head_dim = 64,
134
+ v_head_dim = 128,
135
+ qk_nope_head_dim = 128,
136
+ topk_method = 'noaux_tc',
137
+ n_group = 8,
138
+ topk_group = 4,
139
+ num_experts_per_tok = 8,
140
+ moe_layer_freq = 1,
141
+ first_k_dense_replace = 3,
142
+ norm_topk_prob = True,
143
+ scoring_func = 'sigmoid',
144
+ aux_loss_alpha = 0.001,
145
+ seq_aux = True,
146
+ hidden_act="silu",
147
+ max_position_embeddings=4096,
148
+ initializer_range=0.02,
149
+ rms_norm_eps=1e-6,
150
+ use_cache=True,
151
+ pad_token_id=None,
152
+ bos_token_id=0,
153
+ eos_token_id=1,
154
+ pretraining_tp=1,
155
+ tie_word_embeddings=False,
156
+ rope_theta=10000.0,
157
+ rope_scaling=None,
158
+ attention_bias=False,
159
+ attention_dropout=0.0,
160
+ **kwargs,
161
+ ):
162
+ self.vocab_size = vocab_size
163
+ self.max_position_embeddings = max_position_embeddings
164
+ self.hidden_size = hidden_size
165
+ self.intermediate_size = intermediate_size
166
+ self.moe_intermediate_size = moe_intermediate_size
167
+ self.num_hidden_layers = num_hidden_layers
168
+ self.num_nextn_predict_layers = num_nextn_predict_layers
169
+ self.num_attention_heads = num_attention_heads
170
+ self.n_shared_experts = n_shared_experts
171
+ self.n_routed_experts = n_routed_experts
172
+ self.ep_size = ep_size
173
+ self.routed_scaling_factor = routed_scaling_factor
174
+ self.kv_lora_rank = kv_lora_rank
175
+ self.q_lora_rank = q_lora_rank
176
+ self.qk_rope_head_dim = qk_rope_head_dim
177
+ self.v_head_dim = v_head_dim
178
+ self.qk_nope_head_dim = qk_nope_head_dim
179
+ self.topk_method = topk_method
180
+ self.n_group = n_group
181
+ self.topk_group = topk_group
182
+ self.num_experts_per_tok = num_experts_per_tok
183
+ self.moe_layer_freq = moe_layer_freq
184
+ self.first_k_dense_replace = first_k_dense_replace
185
+ self.norm_topk_prob = norm_topk_prob
186
+ self.scoring_func = scoring_func
187
+ self.aux_loss_alpha = aux_loss_alpha
188
+ self.seq_aux = seq_aux
189
+ # for backward compatibility
190
+ if num_key_value_heads is None:
191
+ num_key_value_heads = num_attention_heads
192
+
193
+ self.num_key_value_heads = num_key_value_heads
194
+ self.hidden_act = hidden_act
195
+ self.initializer_range = initializer_range
196
+ self.rms_norm_eps = rms_norm_eps
197
+ self.pretraining_tp = pretraining_tp
198
+ self.use_cache = use_cache
199
+ self.rope_theta = rope_theta
200
+ self.rope_scaling = rope_scaling
201
+ self.attention_bias = attention_bias
202
+ self.attention_dropout = attention_dropout
203
+
204
+ super().__init__(
205
+ pad_token_id=pad_token_id,
206
+ bos_token_id=bos_token_id,
207
+ eos_token_id=eos_token_id,
208
+ tie_word_embeddings=tie_word_embeddings,
209
+ **kwargs,
210
+ )
hf_quant_config.json ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "producer": {
3
+ "name": "modelopt",
4
+ "version": "0.27.0"
5
+ },
6
+ "quantization": {
7
+ "quant_algo": "NVFP4",
8
+ "kv_cache_quant_algo": null,
9
+ "group_size": 16,
10
+ "exclude_modules": [
11
+ "model.layers.11.mlp.gate",
12
+ "model.layers.11.input_layernorm",
13
+ "model.layers.46.post_attention_layernorm",
14
+ "model.layers.18.input_layernorm",
15
+ "model.layers.21.self_attn*",
16
+ "model.layers.44.self_attn*",
17
+ "model.layers.16.self_attn*",
18
+ "model.layers.21.input_layernorm",
19
+ "model.layers.57.post_attention_layernorm",
20
+ "model.layers.21.post_attention_layernorm",
21
+ "model.layers.59.mlp.gate",
22
+ "model.layers.10.post_attention_layernorm",
23
+ "model.layers.25.post_attention_layernorm",
24
+ "model.layers.20.input_layernorm",
25
+ "model.layers.23.self_attn*",
26
+ "model.layers.60.post_attention_layernorm",
27
+ "model.layers.14.input_layernorm",
28
+ "model.layers.1.input_layernorm",
29
+ "model.layers.53.input_layernorm",
30
+ "model.layers.4.post_attention_layernorm",
31
+ "model.layers.36.input_layernorm",
32
+ "model.layers.52.mlp.gate",
33
+ "model.layers.35.post_attention_layernorm",
34
+ "model.layers.43.self_attn*",
35
+ "model.layers.38.input_layernorm",
36
+ "model.layers.46.mlp.gate",
37
+ "model.layers.15.mlp.gate",
38
+ "model.layers.57.input_layernorm",
39
+ "model.layers.39.input_layernorm",
40
+ "model.layers.50.mlp.gate",
41
+ "model.layers.23.mlp.gate",
42
+ "model.layers.9.mlp.gate",
43
+ "model.layers.18.mlp.gate",
44
+ "model.layers.13.self_attn*",
45
+ "model.layers.25.mlp.gate",
46
+ "model.layers.52.input_layernorm",
47
+ "model.layers.33.post_attention_layernorm",
48
+ "model.layers.42.mlp.gate",
49
+ "model.layers.13.mlp.gate",
50
+ "model.layers.56.post_attention_layernorm",
51
+ "model.layers.26.post_attention_layernorm",
52
+ "model.layers.55.post_attention_layernorm",
53
+ "model.layers.56.self_attn*",
54
+ "model.layers.39.post_attention_layernorm",
55
+ "model.layers.37.mlp.gate",
56
+ "model.layers.31.input_layernorm",
57
+ "model.layers.14.self_attn*",
58
+ "model.layers.22.post_attention_layernorm",
59
+ "model.layers.60.mlp.gate",
60
+ "model.layers.48.self_attn*",
61
+ "model.layers.52.self_attn*",
62
+ "model.layers.43.mlp.gate",
63
+ "model.layers.16.input_layernorm",
64
+ "model.layers.10.input_layernorm",
65
+ "model.layers.24.post_attention_layernorm",
66
+ "model.layers.2.post_attention_layernorm",
67
+ "model.layers.40.input_layernorm",
68
+ "model.layers.9.input_layernorm",
69
+ "model.layers.31.self_attn*",
70
+ "model.layers.57.self_attn*",
71
+ "model.layers.3.input_layernorm",
72
+ "model.layers.11.self_attn*",
73
+ "model.layers.50.input_layernorm",
74
+ "model.layers.4.mlp.gate",
75
+ "model.layers.58.input_layernorm",
76
+ "model.layers.5.post_attention_layernorm",
77
+ "model.layers.29.post_attention_layernorm",
78
+ "model.layers.20.post_attention_layernorm",
79
+ "model.layers.58.mlp.gate",
80
+ "model.layers.9.post_attention_layernorm",
81
+ "model.layers.37.self_attn*",
82
+ "model.layers.2.input_layernorm",
83
+ "model.layers.15.input_layernorm",
84
+ "model.layers.57.mlp.gate",
85
+ "model.layers.19.input_layernorm",
86
+ "model.layers.35.self_attn*",
87
+ "model.layers.21.mlp.gate",
88
+ "model.layers.51.input_layernorm",
89
+ "model.layers.41.input_layernorm",
90
+ "model.layers.52.post_attention_layernorm",
91
+ "model.layers.45.post_attention_layernorm",
92
+ "model.layers.54.post_attention_layernorm",
93
+ "lm_head",
94
+ "model.layers.8.mlp.gate",
95
+ "model.layers.17.post_attention_layernorm",
96
+ "model.layers.13.post_attention_layernorm",
97
+ "model.layers.3.mlp.gate",
98
+ "model.layers.1.post_attention_layernorm",
99
+ "model.layers.55.mlp.gate",
100
+ "model.layers.34.mlp.gate",
101
+ "model.layers.61*",
102
+ "model.layers.37.input_layernorm",
103
+ "model.layers.12.mlp.gate",
104
+ "model.layers.27.mlp.gate",
105
+ "model.layers.48.mlp.gate",
106
+ "model.embed_tokens",
107
+ "model.layers.3.self_attn*",
108
+ "model.layers.12.post_attention_layernorm",
109
+ "model.layers.49.mlp.gate",
110
+ "model.layers.17.mlp.gate",
111
+ "model.layers.55.self_attn*",
112
+ "model.layers.54.input_layernorm",
113
+ "model.layers.24.input_layernorm",
114
+ "model.layers.32.self_attn*",
115
+ "model.layers.23.input_layernorm",
116
+ "model.layers.10.self_attn*",
117
+ "model.layers.42.self_attn*",
118
+ "model.layers.51.self_attn*",
119
+ "model.layers.38.self_attn*",
120
+ "model.layers.7.input_layernorm",
121
+ "model.layers.51.mlp.gate",
122
+ "model.layers.47.mlp.gate",
123
+ "model.layers.28.mlp.gate",
124
+ "model.layers.27.self_attn*",
125
+ "model.layers.12.self_attn*",
126
+ "model.layers.43.input_layernorm",
127
+ "model.layers.14.post_attention_layernorm",
128
+ "model.layers.6.post_attention_layernorm",
129
+ "model.layers.42.input_layernorm",
130
+ "model.layers.37.post_attention_layernorm",
131
+ "model.layers.12.input_layernorm",
132
+ "model.layers.32.mlp.gate",
133
+ "model.layers.17.input_layernorm",
134
+ "model.layers.27.post_attention_layernorm",
135
+ "model.layers.33.mlp.gate",
136
+ "model.layers.30.self_attn*",
137
+ "model.layers.8.self_attn*",
138
+ "model.layers.60.input_layernorm",
139
+ "model.layers.41.mlp.gate",
140
+ "model.layers.58.post_attention_layernorm",
141
+ "model.layers.22.self_attn*",
142
+ "model.layers.11.post_attention_layernorm",
143
+ "model.layers.20.mlp.gate",
144
+ "model.layers.41.self_attn*",
145
+ "model.layers.58.self_attn*",
146
+ "model.layers.23.post_attention_layernorm",
147
+ "model.layers.20.self_attn*",
148
+ "model.layers.30.mlp.gate",
149
+ "model.layers.6.mlp.gate",
150
+ "model.layers.56.input_layernorm",
151
+ "model.layers.2.self_attn*",
152
+ "model.layers.35.mlp.gate",
153
+ "model.layers.6.self_attn*",
154
+ "model.layers.28.input_layernorm",
155
+ "model.layers.1.self_attn*",
156
+ "model.norm",
157
+ "model.layers.40.post_attention_layernorm",
158
+ "model.layers.0.input_layernorm",
159
+ "model.layers.16.mlp.gate",
160
+ "model.layers.25.input_layernorm",
161
+ "model.layers.32.post_attention_layernorm",
162
+ "model.layers.5.input_layernorm",
163
+ "model.layers.32.input_layernorm",
164
+ "model.layers.0.post_attention_layernorm",
165
+ "model.layers.29.self_attn*",
166
+ "model.layers.29.input_layernorm",
167
+ "model.layers.56.mlp.gate",
168
+ "model.layers.15.self_attn*",
169
+ "model.layers.16.post_attention_layernorm",
170
+ "model.layers.54.mlp.gate",
171
+ "model.layers.53.post_attention_layernorm",
172
+ "model.layers.34.post_attention_layernorm",
173
+ "model.layers.33.input_layernorm",
174
+ "model.layers.8.input_layernorm",
175
+ "model.layers.41.post_attention_layernorm",
176
+ "model.layers.7.mlp.gate",
177
+ "model.layers.9.self_attn*",
178
+ "model.layers.28.self_attn*",
179
+ "model.layers.50.self_attn*",
180
+ "model.layers.18.post_attention_layernorm",
181
+ "model.layers.47.input_layernorm",
182
+ "model.layers.27.input_layernorm",
183
+ "model.layers.25.self_attn*",
184
+ "model.layers.6.input_layernorm",
185
+ "model.layers.24.mlp.gate",
186
+ "model.layers.48.input_layernorm",
187
+ "model.layers.44.mlp.gate",
188
+ "model.layers.46.input_layernorm",
189
+ "model.layers.3.post_attention_layernorm",
190
+ "model.layers.35.input_layernorm",
191
+ "model.layers.26.input_layernorm",
192
+ "model.layers.39.self_attn*",
193
+ "model.layers.48.post_attention_layernorm",
194
+ "model.layers.18.self_attn*",
195
+ "model.layers.38.mlp.gate",
196
+ "model.layers.5.self_attn*",
197
+ "model.layers.42.post_attention_layernorm",
198
+ "model.layers.8.post_attention_layernorm",
199
+ "model.layers.19.post_attention_layernorm",
200
+ "model.layers.49.self_attn*",
201
+ "model.layers.59.input_layernorm",
202
+ "model.layers.10.mlp.gate",
203
+ "model.layers.36.mlp.gate",
204
+ "model.layers.26.mlp.gate",
205
+ "model.layers.45.mlp.gate",
206
+ "model.layers.39.mlp.gate",
207
+ "model.layers.47.post_attention_layernorm",
208
+ "model.layers.49.post_attention_layernorm",
209
+ "model.layers.34.self_attn*",
210
+ "model.layers.46.self_attn*",
211
+ "model.layers.44.post_attention_layernorm",
212
+ "model.layers.44.input_layernorm",
213
+ "model.layers.59.post_attention_layernorm",
214
+ "model.layers.33.self_attn*",
215
+ "model.layers.36.self_attn*",
216
+ "model.layers.51.post_attention_layernorm",
217
+ "model.layers.28.post_attention_layernorm",
218
+ "model.layers.7.self_attn*",
219
+ "model.layers.55.input_layernorm",
220
+ "model.layers.40.mlp.gate",
221
+ "model.layers.4.self_attn*",
222
+ "model.layers.45.input_layernorm",
223
+ "model.layers.38.post_attention_layernorm",
224
+ "model.layers.45.self_attn*",
225
+ "model.layers.31.mlp.gate",
226
+ "model.layers.19.self_attn*",
227
+ "model.layers.31.post_attention_layernorm",
228
+ "model.layers.30.input_layernorm",
229
+ "model.layers.29.mlp.gate",
230
+ "model.layers.5.mlp.gate",
231
+ "model.layers.19.mlp.gate",
232
+ "model.layers.54.self_attn*",
233
+ "model.layers.13.input_layernorm",
234
+ "model.layers.40.self_attn*",
235
+ "model.layers.7.post_attention_layernorm",
236
+ "model.layers.36.post_attention_layernorm",
237
+ "model.layers.53.mlp.gate",
238
+ "model.layers.49.input_layernorm",
239
+ "model.layers.0.self_attn*",
240
+ "model.layers.50.post_attention_layernorm",
241
+ "model.layers.26.self_attn*",
242
+ "model.layers.47.self_attn*",
243
+ "model.layers.22.input_layernorm",
244
+ "model.layers.59.self_attn*",
245
+ "model.layers.43.post_attention_layernorm",
246
+ "model.layers.24.self_attn*",
247
+ "model.layers.14.mlp.gate",
248
+ "model.layers.60.self_attn*",
249
+ "model.layers.30.post_attention_layernorm",
250
+ "model.layers.53.self_attn*",
251
+ "model.layers.15.post_attention_layernorm",
252
+ "model.layers.17.self_attn*",
253
+ "model.layers.34.input_layernorm",
254
+ "model.layers.22.mlp.gate",
255
+ "model.layers.4.input_layernorm"
256
+ ]
257
+ }
258
+ }
model-00001-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05325724002e4c8809e7a9f3d9c322c1f78b428f2cf00c14d77699bb73b69d3b
3
+ size 5367981060
model-00002-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a59b0ab0d6bf927fb8e3d09f6eb84d7207ecb04a2d4f67116fff28778e2d23d1
3
+ size 5368656744
model-00003-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acc449ed574b291df189feb4485cff9312e87428adf8f447e481763f0e56bd8e
3
+ size 5365742592
model-00004-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08b71671fd7a2cd9bb2eaeb272640c59737fff119db6f3a0cb668adffc5ca50b
3
+ size 5365742432
model-00005-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08db83b6ad87195403ffd22252f46842a442fac5a83e86d1e70d0ab5e0256ea0
3
+ size 5365757104
model-00006-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15a954c9a53c48a23ef8a3af550dc1295d1c5e2b3ff824522b05d30acd2330cf
3
+ size 5367738752
model-00007-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd85f7574d27080bf63b02defd193abc96c8fe8f3304ea7f981ecdabc46804d9
3
+ size 5365757560
model-00008-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a3cf365094f197904496ed9e121732394f3a08895ddde0790ef94077c7e8b67
3
+ size 5365728072
model-00009-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7701d9c04443cecd7ed6fc033bb9eb4067e3fdb4463062042450e6389c3ffad3
3
+ size 5365756864
model-00010-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0b674b5deb8f7c330b97242a5253f5e85c18d01a9128dbe77abb6917a1b576e
3
+ size 5365758128
model-00011-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98cdb5e36258570f81693ec09bcdad454d9f5e2a38ed931a30e76200f35466e7
3
+ size 5365760056
model-00012-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afe9d5279584a9ab8df94fba9cc3f988f63e4d6da535a2658c706d667a8c13e9
3
+ size 5367741544
model-00013-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f54f25446571678692904a37b8f1db0f7640f478f7583a4f673cd7fdea4cb3b
3
+ size 5365730424
model-00014-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb2b00547c0e35d0380decbdd6d62fec7d70c3205340e8eaef13ee895f88c35f
3
+ size 5365759416
model-00015-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56d4f1c9ab2cb63ae605f88fa33a2752f0a7f6e4ef919d3142f834e3fda39bbe
3
+ size 5365759432
model-00016-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5cb3fd5942326cdfe05474605510bfa5d022b1c680c22bfa61fbb5ab336af7d
3
+ size 5367741488
model-00017-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e50784db149cf5290fa582637d5a1801250edc15743e54be5d7ec33509972ddf
3
+ size 5365745504
model-00018-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5da9016fc8f2ffc40312804b4553123a0af66d5238a10e6f2b67eaaae1a8ee99
3
+ size 5365744824
model-00019-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0255864eb2c59a54258ef3239d3d5d60b835a20ffa48b87b4d6e69ba75c3a7e2
3
+ size 5365759432
model-00020-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b83c643a60d1f70047daaae3d25d6a43cda5deda546ba8767f1b195fd83ac1d
3
+ size 5148969068
model-00021-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eccd170f38c4fe26c345355f8353b8e81e48efb3d136074af1c224f6ce21a89b
3
+ size 5366666288
model-00022-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a073da2749ee973bb24d892c8c0750b1d73fe9caea7084f8b0b19669e2574b2
3
+ size 5368902860
model-00023-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ab3158436d0861a9843fd9cda9fec060543867e04ba4c1101be40556402223f
3
+ size 5365744824
model-00024-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5ec49a58505578c37d84fed6311a28d0f261a57f10ac5eedf86ada9323acec4
3
+ size 5365759416
model-00025-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcd8999171e24a9888869463a11497a0e6190290b15dbbd942a694b3e8b881df
3
+ size 5365759688
model-00026-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49c0f0e6911739a55c59d1a16b4dfa8a204c37b420cd104d77c60132900c4491
3
+ size 5367741512
model-00027-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85645e0e1670b51849bbefc80f59f19ff990acd3038d9cf9c6a825a6ced8a347
3
+ size 5365745240
model-00028-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed8d08dc10db9d7e4e4478314bf1f4d6715c7d4027f1af1b1eba0c3d1a6a0819
3
+ size 5365744824
model-00029-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd19fc1a4665ac1f3f203e3f40038d3fcb383a1218664ee87053307cbad2c506
3
+ size 5365759688
model-00030-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b02e9b46dd474bd00dec3d8540513fdf4471b33d9ac1d17e6b4081c9b80af1d5
3
+ size 5367741008
model-00031-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da4992c789b331df8706c3bfee17306e9a66eb992dc50ab45a1015d246703a12
3
+ size 5361174228
model-00032-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a583aad3dd5caef1914f394d817273ee753bce0c225303192dfdb15a2f486708
3
+ size 5362072908
model-00033-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d180fdf6472820ef43e2e210db626e69122d4c949512782c35f4ca5a6b6bec7b
3
+ size 5365744824
model-00034-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d642722d928709ce6d15e91d654c1a7f08a55790b1d76250a3469c6acc1b2c8
3
+ size 5365759416
model-00035-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:886756a883956f8859c10714b2078e4e82e723e06b8799332337e33d8e812cf5
3
+ size 5365759832
model-00036-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26e34e82e9f2a3238775d04c1b65442b4cdcb2440086bcc2058b8f337c83bbda
3
+ size 5367741528
model-00037-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c810232eb1bd8894590902e8f72efc9ddca5990be7c871f0e26c63c36632531
3
+ size 5365745072
model-00038-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:103a5c2acbc4c26267ad98bab7292d0ee035c77194be664e9f0e9c6b3f0bed92
3
+ size 5365744824
model-00039-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:732f4293d4d7c6394b88e434f6e570aa20bb53850685def7fdcf072db4974d2b
3
+ size 5365759768
model-00040-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca14789c666f9e99fff999c62be35e8034f02b2be86b9835ef8acb9e4579a055
3
+ size 5367741088
model-00041-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7cf1e666679691c41103a8e90cabbb0d4c24b09ae48804d38786207176733ae
3
+ size 5365760000
model-00042-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a762dca2b5c25f88909705c88f07d1ce36b5cdb617e1b31aaff8925f1fb7e57f
3
+ size 5365730560
model-00043-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d13ff117174cb286d0f1b7feb4cd23bdc635db1a1a427165427292a1a3a96aed
3
+ size 5365759264
model-00044-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bef141290bc924ba8eea6468246fc9aaf987cb8a0b8b2f8666139df0de190f4
3
+ size 5365759416
model-00045-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cd5809b7bf24cd1779050202c49687b0a3ac6babb6e43645a08294dc629833c
3
+ size 5365759976
model-00046-of-00080.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05b064f019985465254745c7958733ad460cc43aa25918dddfc7ae927457f566
3
+ size 5367741536