File size: 9,427 Bytes
93561da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47df0c3
93561da
 
 
 
78ccb7d
 
 
 
 
 
 
 
93561da
 
 
2923390
93561da
 
 
2923390
93561da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2923390
93561da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c61b75
93561da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
license: other
license_name: nvidia-open-model-license
license_link: >-
  https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
inference: false
fine-tuning: false
tags:
  - nvidia
  - llama3.3
datasets:
  - nvidia/HelpSteer3
base_model: meta-llama/Llama-3.3-70B-Instruct
pipeline_tag: text-generation
library_name: transformers
---

# Model Overview

## Description:

Llama-3.3-Nemotron-70B-Feedback is a large language model that leverages Meta-Llama-3.3-70B-Instruct as the foundation and is fine-tuned using Supervised Finetuning to provide feedback regarding the helpfulness of LLM generated responses to user queries.

This model is ready for commercial use.

## License/Terms of Use:

GOVERNING TERMS: Use of this model is governed by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/) . Additional Information: [Llama 3.3 Community License Agreement](https://www.llama.com/llama3_3/license/). Built with Llama.


## Arena Hard LeaderBoard

As of 18 Mar 2025, augmenting models with the Feedback-Edit Inference Time Scaling (ITS) approach leads to the highest performance on Arena Hard.

The Feedback-Edit Inference Time Scaling system comprise of the following models:

1. [Llama-3.3-Nemotron-70B-Feedback](https://huggingface.co/nvidia/Llama-3.3-Nemotron-70B-Feedback)
2. [Llama-3.3-Nemotron-70B-Edit](https://huggingface.co/nvidia/Llama-3.3-Nemotron-70B-Edit)
3. [Llama-3.3-Nemotron-70B-Select](https://huggingface.co/nvidia/Llama-3.3-Nemotron-70B-Select)


| Model  | Arena Hard (95% CI) | 
|:-----------------------------|:----------------|
| Llama-3.3-Nemotron-Super-49B-v1 + **Feedback-Edit ITS** | **93.4 (-1.1, 1.0)** |
| Llama-3.1-Nemotron-70B-Instruct + **Feedback-Edit ITS** | 92.7 (-1.2, 0.9) |
| o1-mini-2024-09-12          | 92.0 (-1.2, 1.0)  |   
| o1-preview-2024-09-12         | 90.4 (-1.1, 1.3)  |
| Llama-3.3-Nemotron-Super-49B-v1 | 88.3 (-1.6, 1.6) |
| claude-3-5-sonnet-20241022     | 85.2 (-1.4, 1.6) |
| Llama-3.1-Nemotron-70B-Instruct | 84.9 (-1.7, 1.8) |


## Use Case:

Llama-3.3-Nemotron-70B-Feedback provides feedback regarding the helpfulness of LLM generated responses to user queries, for users who are interested in improving performance through Inference-Time-Scaling for general-domain, open-ended tasks.

## Release Date:

03/18/2025


## References(s):

* [Dedicated Feedback and Edit Models Empower Inference-Time Scaling for Open-Ended General-Domain Tasks](https://www.arxiv.org/abs/2503.04378)
* [HelpSteer2-Preference](https://arxiv.org/abs/2410.01257)
* [SteerLM method](https://arxiv.org/abs/2310.05344)
* [HelpSteer](https://arxiv.org/abs/2311.09528)
* [HelpSteer2](https://arxiv.org/abs/2406.08673)
* [The future of AI: Built with Llama](https://ai.meta.com/blog/future-of-ai-built-with-llama/) 
* [Meta's Llama 3.3 Webpage](https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3) 
* [Meta's Llama 3.3 Model Card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md)


## Model Architecture: 
**Architecture Type:** Transformer <br>
**Network Architecture:** Llama 3.3 <br>

We developed this model using Llama-3.3-70B-Instruct as its foundation. This model contains 70 billion parameters.

## Input:
**Input Type(s):** Text <br>
**Input Format:** String <br>
**Input Parameters:** One Dimensional (1D) <br>
**Other Properties Related to Input:** Max of 128k tokens<br>

## Output:
**Output Type(s):** Text <br>
**Output Format:** String <br>
**Output Parameters:** One Dimensional (1D) <br>
**Other Properties Related to Output:**  Max of 4k tokens <br>

## Software Integration:
**Runtime Engine(s):** <br>
* [NeMo - 24.05.llama.3.1] <br>

**Supported Hardware Microarchitecture Compatibility:** <br>
* NVIDIA Ampere <br>
* NVIDIA Hopper <br>
* NVIDIA Turing <br>
**Supported Operating System(s):** Linux <br>

## Quick Start

You can use the model using HuggingFace Transformers library with 2 or more 80GB GPUs (NVIDIA Ampere or newer) with at least 150GB of free disk space to accomodate the download.

This code has been tested on Transformers v4.45.0, torch v2.3.0a0+40ec155e58.nv24.3 and 2 A100 80GB GPUs, but any setup that supports meta-llama/Llama-3.1-70B-Instruct should support this model as well. If you run into problems, you can consider doing pip install -U transformers.

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Feedback"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)


def generate_feedback(messages, model, tokenizer, temperature=0.7):
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=128, pad_token_id = tokenizer.eos_token_id, num_return_sequences=1, temperature=temperature)
    generated_tokens =response_token_ids[:, len(tokenized_message['input_ids'][0]):]
    generated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
    return generated_text

prompt = "What is the distance between the Earth and the Sun?"
response = "The distance from Earth to the Sun is 93 million miles"

messages = [
        {"role": "user", "content": prompt},
        {"role": "assistant", "content": response},
        {"role": "user", "content": "Evaluate the response to the previous prompt in terms of how helpful it is overall. Start the evaluation with the statement - The response is {not / slightly / partially / mostly / perfectly} helpful. Then provide a brief explanation of the evaluation in 2 to 10 sentences."}
    ]

feedback = generate_feedback(messages, model, tokenizer, temperature=0.7)
print(feedback)

## Illustrative example - feedback generated might not be identical since temperature sampling is used

# The response is partially helpful. It provides a concise answer to the prompt. However, the lack of additional information or context limits its usefulness. It could have been more informative by including the average distance in astronomical units (AU) and explaining the variation in distance due to the elliptical orbit.
```

## Model Version: 
v1.0

# Training and Testing Datasets: 

## Training Datasets:

**Dataset Name:** HelpSteer3
**Dataset Link:** https://huggingface.co/datasets/nvidia/HelpSteer3

**Data Collection Method by dataset** <br>
* [Hybrid: Human, Synthetic] <br>

**Labeling Method by dataset** <br>
* [Human] <br>

**Properties:** <br>
* 77,564 prompt-responses, each annotated with up to 3 annotations of free-text feedback (each being 50-250 words long) elaborating upon the overall helpfulness of the response.

## Testing Datasets:

**Dataset Name:** HelpSteer3
**Dataset Link:** https://huggingface.co/datasets/nvidia/HelpSteer3

**Data Collection Method by dataset** <br>
* [Hybrid: Human, Synthetic] <br>

**Labeling Method by dataset** <br>
* [Human] <br>

**Properties:** <br>
* 4,078  prompt-responses, each annotated with up to 3 annotations of free-text feedback (each being 50-250 words long) elaborating upon the overall helpfulness of the response.


# Inference:
**Engine:** [Triton](https://developer.nvidia.com/triton-inference-server) <br>
**Test Hardware:** H100, A100 80GB, A100 40GB <br>

## Limitations:

The model was trained on data that contains toxic language, unsafe content, and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.

## Ethical Considerations:
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.  When downloaded or used in accordance with our terms of service, developers should work with their supporting model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. 
For more detailed information on ethical considerations for this model, please see the Model Card++ [Explainability](explainability.md), [Bias](bias.md), [Safety & Security](safety.md), and [Privacy](privacy.md) Subcards.  
Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).

## Citation

If you find this model useful, please cite the following work:

```bibtex
@misc{wang2025dedicatedfeedbackeditmodels,
      title={Dedicated Feedback and Edit Models Empower Inference-Time Scaling for Open-Ended General-Domain Tasks}, 
      author={Zhilin Wang and Jiaqi Zeng and Olivier Delalleau and Daniel Egert and Ellie Evans and Hoo-Chang Shin and Felipe Soares and Yi Dong and Oleksii Kuchaiev},
      year={2025},
      eprint={2503.04378},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2503.04378},
}
```