Set pipeline tag to image-classification and add code link (#1)
Browse files- Set pipeline tag to image-classification and add code link (585e5761059c378e13dc562f32e1ca8571161e7c)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: other
|
3 |
license_name: nvclv1
|
4 |
license_link: LICENSE
|
5 |
-
|
6 |
-
|
7 |
-
pipeline_tag: image-feature-extraction
|
8 |
---
|
9 |
|
10 |
-
|
11 |
[**MambaVision: A Hybrid Mamba-Transformer Vision Backbone**](https://arxiv.org/abs/2407.08083).
|
12 |
|
13 |
## Model Overview
|
@@ -37,7 +37,6 @@ MambaVision-B-21K is pretrained on ImageNet-21K dataset and finetuned on ImageNe
|
|
37 |
<td>224x224</td>
|
38 |
</tr>
|
39 |
|
40 |
-
|
41 |
</table>
|
42 |
|
43 |
In addition, the MambaVision models demonstrate a strong performance by achieving a new SOTA Pareto-front in
|
@@ -48,11 +47,11 @@ terms of Top-1 accuracy and throughput.
|
|
48 |
class="center">
|
49 |
</p>
|
50 |
|
51 |
-
|
52 |
## Model Usage
|
53 |
|
54 |
It is highly recommended to install the requirements for MambaVision by running the following:
|
55 |
|
|
|
56 |
|
57 |
```Bash
|
58 |
pip install mambavision
|
@@ -66,13 +65,11 @@ In the following example, we demonstrate how MambaVision can be used for image c
|
|
66 |
|
67 |
Given the following image from [COCO dataset](https://cocodataset.org/#home) val set as an input:
|
68 |
|
69 |
-
|
70 |
<p align="center">
|
71 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70%
|
72 |
class="center">
|
73 |
</p>
|
74 |
|
75 |
-
|
76 |
The following snippet can be used for image classification:
|
77 |
|
78 |
```Python
|
@@ -136,7 +133,7 @@ transform = create_transform(input_size=input_resolution,
|
|
136 |
is_training=False,
|
137 |
mean=model.config.mean,
|
138 |
std=model.config.std,
|
139 |
-
crop_mode=model.config.
|
140 |
crop_pct=model.config.crop_pct)
|
141 |
inputs = transform(image).unsqueeze(0).cuda()
|
142 |
# model inference
|
@@ -147,7 +144,6 @@ print("Size of extracted features in stage 1:", features[0].size()) # torch.Size
|
|
147 |
print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 640, 7, 7])
|
148 |
```
|
149 |
|
150 |
-
|
151 |
### License:
|
152 |
|
153 |
[NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-B-21K/blob/main/LICENSE)
|
|
|
1 |
---
|
2 |
+
datasets:
|
3 |
+
- ILSVRC/imagenet-21k
|
4 |
license: other
|
5 |
license_name: nvclv1
|
6 |
license_link: LICENSE
|
7 |
+
pipeline_tag: image-classification
|
8 |
+
library_name: transformers
|
|
|
9 |
---
|
10 |
|
|
|
11 |
[**MambaVision: A Hybrid Mamba-Transformer Vision Backbone**](https://arxiv.org/abs/2407.08083).
|
12 |
|
13 |
## Model Overview
|
|
|
37 |
<td>224x224</td>
|
38 |
</tr>
|
39 |
|
|
|
40 |
</table>
|
41 |
|
42 |
In addition, the MambaVision models demonstrate a strong performance by achieving a new SOTA Pareto-front in
|
|
|
47 |
class="center">
|
48 |
</p>
|
49 |
|
|
|
50 |
## Model Usage
|
51 |
|
52 |
It is highly recommended to install the requirements for MambaVision by running the following:
|
53 |
|
54 |
+
Code: https://github.com/NVlabs/MambaVision
|
55 |
|
56 |
```Bash
|
57 |
pip install mambavision
|
|
|
65 |
|
66 |
Given the following image from [COCO dataset](https://cocodataset.org/#home) val set as an input:
|
67 |
|
|
|
68 |
<p align="center">
|
69 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70%
|
70 |
class="center">
|
71 |
</p>
|
72 |
|
|
|
73 |
The following snippet can be used for image classification:
|
74 |
|
75 |
```Python
|
|
|
133 |
is_training=False,
|
134 |
mean=model.config.mean,
|
135 |
std=model.config.std,
|
136 |
+
crop_mode=model.config.crop_pct,
|
137 |
crop_pct=model.config.crop_pct)
|
138 |
inputs = transform(image).unsqueeze(0).cuda()
|
139 |
# model inference
|
|
|
144 |
print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 640, 7, 7])
|
145 |
```
|
146 |
|
|
|
147 |
### License:
|
148 |
|
149 |
[NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-B-21K/blob/main/LICENSE)
|