ahatamiz commited on
Commit
72672aa
·
verified ·
1 Parent(s): d0b71fc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -158
README.md CHANGED
@@ -1,199 +1,129 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
61
 
62
- [More Information Needed]
 
 
 
 
 
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
75
 
76
- ## Training Details
77
 
78
- ### Training Data
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
81
 
82
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: other
3
+ license_name: nvclv1
4
+ license_link: LICENSE
5
+ datasets:
6
+ - ILSVRC/imagenet-21k
7
+ pipeline_tag: image-feature-extraction
8
  ---
9
 
 
10
 
11
+ [**MambaVision: A Hybrid Mamba-Transformer Vision Backbone**](https://arxiv.org/abs/2407.08083).
12
 
13
+ ## Model Overview
14
 
15
+ We have developed the first hybrid model for computer vision which leverages the strengths of Mamba and Transformers. Specifically, our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features. In addition, we conducted a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba. Our results demonstrate that equipping the Mamba architecture with several self-attention blocks at the final layers greatly improves the modeling capacity to capture long-range spatial dependencies. Based on our findings, we introduce a family of MambaVision models with a hierarchical architecture to meet various design criteria.
16
 
17
+ ## Model Performance
18
 
19
+ MambaVision demonstrates a strong performance by achieving a new SOTA Pareto-front in
20
+ terms of Top-1 accuracy and throughput.
21
 
22
+ <p align="center">
23
+ <img src="https://github.com/NVlabs/MambaVision/assets/26806394/79dcf841-3966-4b77-883d-76cd5e1d4320" width=70% height=70%
24
+ class="center">
25
+ </p>
26
 
 
27
 
28
+ ## Model Usage
 
 
 
 
 
 
29
 
30
+ It is highly recommended to install the requirements for MambaVision by running the following:
31
 
 
32
 
33
+ ```Bash
34
+ pip install mambavision
35
+ ```
36
 
37
+ For each model, we offer two variants for image classification and feature extraction that can be imported with 1 line of code.
38
 
39
+ ### Image Classification
40
 
41
+ In the following example, we demonstrate how MambaVision can be used for image classification.
42
 
43
+ Given the following image from [COCO dataset](https://cocodataset.org/#home) val set as an input:
44
 
 
45
 
46
+ <p align="center">
47
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70%
48
+ class="center">
49
+ </p>
50
 
 
51
 
52
+ The following snippet can be used for image classification:
53
 
54
+ ```Python
55
+ from transformers import AutoModelForImageClassification
56
+ from PIL import Image
57
+ from timm.data.transforms_factory import create_transform
58
+ import requests
59
 
60
+ model = AutoModelForImageClassification.from_pretrained("nvidia/MambaVision-L-21K", trust_remote_code=True)
61
 
62
+ # eval mode for inference
63
+ model.cuda().eval()
64
 
65
+ # prepare image for the model
66
+ url = 'http://images.cocodataset.org/val2017/000000020247.jpg'
67
+ image = Image.open(requests.get(url, stream=True).raw)
68
+ input_resolution = (3, 224, 224) # MambaVision supports any input resolutions
69
 
70
+ transform = create_transform(input_size=input_resolution,
71
+ is_training=False,
72
+ mean=model.config.mean,
73
+ std=model.config.std,
74
+ crop_mode=model.config.crop_mode,
75
+ crop_pct=model.config.crop_pct)
76
 
77
+ inputs = transform(image).unsqueeze(0).cuda()
78
+ # model inference
79
+ outputs = model(inputs)
80
+ logits = outputs['logits']
81
+ predicted_class_idx = logits.argmax(-1).item()
82
+ print("Predicted class:", model.config.id2label[predicted_class_idx])
83
+ ```
84
 
85
+ The predicted label is ```brown bear, bruin, Ursus arctos.```
86
 
87
+ ### Feature Extraction
88
 
89
+ MambaVision can also be used as a generic feature extractor.
90
 
91
+ Specifically, we can extract the outputs of each stage of model (4 stages) as well as the final averaged-pool features that are flattened.
92
 
93
+ The following snippet can be used for feature extraction:
94
 
95
+ ```Python
96
+ from transformers import AutoModel
97
+ from PIL import Image
98
+ from timm.data.transforms_factory import create_transform
99
+ import requests
100
 
101
+ model = AutoModel.from_pretrained("nvidia/MambaVision-L-21K", trust_remote_code=True)
102
 
103
+ # eval mode for inference
104
+ model.cuda().eval()
105
 
106
+ # prepare image for the model
107
+ url = 'http://images.cocodataset.org/val2017/000000020247.jpg'
108
+ image = Image.open(requests.get(url, stream=True).raw)
109
+ input_resolution = (3, 224, 224) # MambaVision supports any input resolutions
110
 
111
+ transform = create_transform(input_size=input_resolution,
112
+ is_training=False,
113
+ mean=model.config.mean,
114
+ std=model.config.std,
115
+ crop_mode=model.config.crop_mode,
116
+ crop_pct=model.config.crop_pct)
117
+ inputs = transform(image).unsqueeze(0).cuda()
118
+ # model inference
119
+ out_avg_pool, features = model(inputs)
120
+ print("Size of the averaged pool features:", out_avg_pool.size()) # torch.Size([1, 640])
121
+ print("Number of stages in extracted features:", len(features)) # 4 stages
122
+ print("Size of extracted features in stage 1:", features[0].size()) # torch.Size([1, 80, 56, 56])
123
+ print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 640, 7, 7])
124
+ ```
125
 
 
126
 
127
+ ### License:
128
 
129
+ [NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-L-21K/blob/main/LICENSE)