File size: 7,602 Bytes
5f7ffb4
 
 
6cd5d28
5f7ffb4
6cd5d28
5f7ffb4
 
 
 
 
 
d988089
5f7ffb4
f6f7b94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9f5111
f6f7b94
 
5f7ffb4
f6f7b94
 
 
 
 
5f7ffb4
f6f7b94
 
 
 
 
5f7ffb4
f6f7b94
5f7ffb4
 
f6f7b94
c5cdb00
f6f7b94
 
 
 
 
 
 
 
 
 
 
5f7ffb4
f9f5111
f6f7b94
f9f5111
f6f7b94
 
 
 
 
 
f9f5111
f6f7b94
 
 
 
 
5f7ffb4
f6f7b94
 
 
 
 
5f7ffb4
f6f7b94
5f7ffb4
f6f7b94
 
c5cdb00
f6f7b94
 
c5cdb00
5f7ffb4
f6f7b94
c5cdb00
f6f7b94
 
 
 
5f7ffb4
 
f6f7b94
5f7ffb4
f6f7b94
5f7ffb4
f6f7b94
5f7ffb4
f6f7b94
 
 
5f7ffb4
f6f7b94
 
 
 
5f7ffb4
24e3e00
 
f6f7b94
 
c5cdb00
f6f7b94
 
c5cdb00
f6f7b94
 
5f7ffb4
f6f7b94
 
5f7ffb4
f6f7b94
 
 
5f7ffb4
f6f7b94
 
 
4d3b653
f6f7b94
 
4d3b653
f6f7b94
4d3b653
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
library_name: transformers
license: other
license_name: nvidia-internal-scientific-research-and-development-model-license
license_link: >-
  https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-internal-scientific-research-and-development-model-license/
pipeline_tag: text-generation
tags:
  - nvidia
  - pytorch
---

# OpenCodeReasoning-Nemotron-7B Overview

## Description: <br>
OpenCodeReasoning-Nemotron-7B is a large language model (LLM) which is a derivative of Qwen2.5-7B-Instruct (AKA the reference model). It is a reasoning model that is post-trained for reasoning for code generation. The model supports a context length of 32K tokens. <br>

This model is ready for commercial/non-commercial use. <br>


## Results from [OpenCodeReasoning](https://arxiv.org/abs/2504.01943)

Below results are the average of **64 evaluations** on each benchmark.

| Model                  | LiveCodeBench Avg. | CodeContest All |
|------------------------|--------------------|-----------------|
| DeepSeek-R1            | 65.6               | 26.2            |
| QwQ-32B                | 61.3               | 20.2            |
|                        |                    |                 |
| **Distilled 7B+ Models** |                    |                 |
|                        |                    |                 |
| Bespoke-Stratos-7B     | 14.7               | 2.0             |
| OpenThinker-7B         | 25.5               | 5.0             |
| R1-Distill-Qwen-7B     | 38.0               | 11.1            |
| OlympicCoder-7B        | 40.9               | 10.6            |
| **OCR-Qwen-7B** | **48.5** | **16.3** |
| **OCR-Qwen-7B-Instruct** | **51.3** | **18.1** |
|                        |                    |                 |
| **Distilled 14B+ Models**|                    |                 |
|                        |                    |                 |
| R1-Distill-Qwen-14B    | 51.3               | 17.6            |
| **OCR-Qwen-14B** | **57.7** | **22.6** |
| **OCR-Qwen-14B-Instruct**| **59.4** | **23.6** |
|                        |                    |                 |
| **Distilled 32B+ Models**|                    |                 |
|                        |                    |                 |
| Bespoke-Stratos-32B    | 30.1               | 6.3             |
| OpenThinker-32B        | 54.1               | 16.4            |
| R1-Distill-Qwen-32B    | 58.1               | 18.3            |
| OlympicCoder-32B       | 57.4               | 18.0            |
| **OCR-Qwen-32B** | **61.8** | **24.6** |
| **OCR-Qwen-32B-Instruct**| **61.7** | **24.4** |

## Reproducing our results

* [Models](https://huggingface.co/collections/nvidia/opencodereasoning-2-68168f37cd7c6beb1e3f92e7)
* [Dataset](https://huggingface.co/datasets/nvidia/OpenCodeReasoning)
* [Paper](https://arxiv.org/abs/2504.01943)


## How to use the models?

To run inference on coding problems:

```python
import transformers
import torch

model_id = "nvidia/OpenMath-Nemotron-1.5B"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

prompt = """You are a helpful and harmless assistant. You should think step-by-step before responding to the instruction below.

Please use python programming language only.

You must use ```python for just the final solution code block with the following format:
```python
# Your code here
```

{user}
"""

messages = [
    {
        "role": "user", 
        "content": prompt.format(user="Write a program to calculate the sum of the first $N$ fibonacci numbers")},
]

outputs = pipeline(
    messages,
    max_new_tokens=32768,
)
print(outputs[0]["generated_text"][-1]['content'])

```


## Citation

If you find the data useful, please cite:
```
@article{ahmad2025opencodereasoning,
      title={OpenCodeReasoning: Advancing Data Distillation for Competitive Coding}, 
      author={Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jocelyn Huang, Vahid Noroozi, Boris Ginsburg},
      year={2025},
      eprint={2504.01943},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2504.01943}, 
}


## Additional Information

## Model Architecture: <br>
Architecture Type: Dense decoder-only Transformer model
Network Architecture: Qwen-7B-Instruct 
<br>
**This model was developed based on Qwen2.5-7B-Instruct and has 7B model parameters. <br>**
**OpenCodeReasoning-Nemotron-7B was developed based on Qwen2.5-7B-Instruct and has 7B model parameters. <br>**

## Input: <br>
**Input Type(s):** Text <br>
**Input Format(s):** String <br>
**Input Parameters:** One-Dimensional (1D) <br>
**Other Properties Related to Input:** Context length up to 32,768 tokens <br>

## Output: <br>
**Output Type(s):** Text <br>
**Output Format:** String <br>
**Output Parameters:** One-Dimensional (1D) <br>
**Other Properties Related to Output:** Context length up to 32,768 tokens <br> 

Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. <br>   

## Software Integration : <br>
* Runtime Engine: NeMo 2.3.0 <br>
* Recommended Hardware Microarchitecture Compatibility: <br>
NVIDIA Ampere <br>
NVIDIA Hopper <br>
* Preferred/Supported Operating System(s): Linux <br> 

## Model Version(s): 
1.0 (4/25/2025)  <br>
OpenCodeReasoning-Nemotron-7B<br>
OpenCodeReasoning-Nemotron-14B<br>
OpenCodeReasoning-Nemotron-32B<br>
OpenCodeReasoning-Nemotron-32B-IOI<br>


# Training and Evaluation Datasets: <br>   

## Training Dataset:

The training corpus for OpenCodeReasoning-Nemotron-7B is [OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning) dataset, which is composed of competitive programming questions and DeepSeek-R1 generated responses. 

Data Collection Method: Hybrid: Automated, Human, Synthetic <br>
Labeling Method: Hybrid: Automated, Human, Synthetic <br>
Properties: 736k samples from OpenCodeReasoning (https://huggingface.co/datasets/nvidia/OpenCodeReasoning)

## Evaluation Dataset:
We used the datasets listed in the next section to evaluate OpenCodeReasoning-Nemotron-7B. <br>
**Data Collection Method: Hybrid: Automated, Human, Synthetic <br>**
**Labeling Method: Hybrid: Automated, Human, Synthetic <br>**



### License/Terms of Use: <br> 
GOVERNING TERMS: Use of this model is governed by [Apache 2.0](https://huggingface.co/nvidia/OpenCode-Nemotron-2-7B/blob/main/LICENSE).

### Deployment Geography:
Global<br>

### Use Case: <br>
This model is intended for developers and researchers building LLMs. <br>

### Release Date:  <br>
Huggingface [04/25/2025] via https://huggingface.co/nvidia/OpenCodeReasoning-Nemotron-7B/ <br> 

## Reference(s):
[2504.01943] OpenCodeReasoning: Advancing Data Distillation for Competitive Coding
<br>

## Inference:
**Engine:** vLLM <br>
**Test Hardware** NVIDIA H100-80GB <br>

## Ethical Considerations:
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.  When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.  

Please report security vulnerabilities or NVIDIA AI Concerns here.