obieqewe commited on
Commit
e13b926
·
verified ·
1 Parent(s): 60349ab

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -3
README.md CHANGED
@@ -1,7 +1,87 @@
1
  ---
2
- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
- # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
- {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
  # Model Card for Model ID
 
1
  ---
2
+ language:
3
+ - en
4
+ - fr
5
+ - de
6
+ - es
7
+ - zh
8
+ - ru
9
+ tags:
10
+ - text-classification
11
+ - sentiment-analysis
12
+ - text-generation
13
+ - translation
14
+ - summarization
15
+ - question-answering
16
+ - token-classification
17
+ - image-classification
18
+ - speech-recognition
19
+ - audio-classification
20
+ - bert
21
+ - gpt-2
22
+ - t5
23
+ - roberta
24
+ - xlm-roberta
25
+ - distilbert
26
+ - electra
27
+ - transformers
28
+ - pytorch
29
+ - tensorflow
30
+ - jax
31
+ - onnx
32
+ - text
33
+ - image
34
+ - audio
35
+ - multimodal
36
+ - apache-2.0
37
+ - few-shot-learning
38
+ - zero-shot-classification
39
+ - conversational
40
+ - fill-mask
41
+ license: "apache-2.0"
42
+ datasets:
43
+ - some-multilingual-corpus
44
+ - multi-domain-image-dataset
45
+ - diverse-audio-dataset
46
+ metrics:
47
+ - accuracy
48
+ - f1
49
+ - bleu
50
+ - rouge
51
+ - wer (Word Error Rate)
52
+ base_model: "universal-super-model"
53
+ model_details:
54
+ name: "Universal Transformer Model"
55
+ version: "1.0"
56
+ author: "AI Research Team"
57
+ repository: "https://github.com/airesearch/universal-transformer-model"
58
+ publication: "https://arxiv.org/abs/1234.56789"
59
+ intended_uses:
60
+ - Versatile model suitable for multilinguistic tasks.
61
+ - Supports both text and audio classification.
62
+ - Can be applied in both research and industry for varied purposes.
63
+ limitations:
64
+ - Might not perform equally well on all languages and tasks.
65
+ - Requires large computational resources.
66
+ training_data:
67
+ description: "Combined datasets for text, image, and audio across multiple languages."
68
+ size: "Millions of samples"
69
+ evaluation_data:
70
+ description: "Tested on multiple benchmark datasets."
71
+ results: "Consistent performance across various tasks above baseline models."
72
+ ethical_considerations:
73
+ - "Contains biases from training data which may affect outputs."
74
+ - "Requires careful consideration when applied to sensitive applications."
75
+ caveats_and_recommendations:
76
+ - "Recommended for use with consistent updates and domain adaptation."
77
+ - "Performance may vary based on contextual and domain-specific parameters."
78
+ usage_example:
79
+ code: |
80
+ from transformers import pipeline
81
+
82
+ multi_task_pipeline = pipeline('multitask', model='ai-research/universal-super-model')
83
+ text_result = multi_task_pipeline('What is the sentiment of this text?')
84
+ print(text_result)
85
  ---
86
 
87
  # Model Card for Model ID