Training in progress, epoch 9, checkpoint
Browse files- checkpoint-14148/added_tokens.json +3 -0
- checkpoint-14148/config.json +37 -0
- checkpoint-14148/generation_config.json +13 -0
- checkpoint-14148/global_step14148/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-14148/global_step14148/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-14148/global_step14148/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-14148/global_step14148/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-14148/global_step14148/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-14148/global_step14148/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-14148/global_step14148/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-14148/global_step14148/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-14148/global_step14148/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-14148/global_step14148/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-14148/global_step14148/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-14148/global_step14148/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-14148/global_step14148/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- checkpoint-14148/global_step14148/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- checkpoint-14148/global_step14148/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- checkpoint-14148/global_step14148/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- checkpoint-14148/latest +1 -0
- checkpoint-14148/model-00001-of-00002.safetensors +3 -0
- checkpoint-14148/model-00002-of-00002.safetensors +3 -0
- checkpoint-14148/model.safetensors.index.json +451 -0
- checkpoint-14148/rng_state_0.pth +3 -0
- checkpoint-14148/rng_state_1.pth +3 -0
- checkpoint-14148/rng_state_2.pth +3 -0
- checkpoint-14148/rng_state_3.pth +3 -0
- checkpoint-14148/rng_state_4.pth +3 -0
- checkpoint-14148/rng_state_5.pth +3 -0
- checkpoint-14148/rng_state_6.pth +3 -0
- checkpoint-14148/rng_state_7.pth +3 -0
- checkpoint-14148/scheduler.pt +3 -0
- checkpoint-14148/special_tokens_map.json +33 -0
- checkpoint-14148/tokenizer.json +3 -0
- checkpoint-14148/tokenizer.model +3 -0
- checkpoint-14148/tokenizer_config.json +0 -0
- checkpoint-14148/trainer_state.json +2087 -0
- checkpoint-14148/training_args.bin +3 -0
- checkpoint-14148/zero_to_fp32.py +760 -0
checkpoint-14148/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<image_soft_token>": 262144
|
3 |
+
}
|
checkpoint-14148/config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Gemma3ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attn_logit_softcapping": null,
|
8 |
+
"bos_token_id": 2,
|
9 |
+
"cache_implementation": "hybrid",
|
10 |
+
"eos_token_id": 1,
|
11 |
+
"final_logit_softcapping": null,
|
12 |
+
"head_dim": 256,
|
13 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
14 |
+
"hidden_size": 2560,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 10240,
|
17 |
+
"max_position_embeddings": 131072,
|
18 |
+
"model_type": "gemma3_text",
|
19 |
+
"num_attention_heads": 8,
|
20 |
+
"num_hidden_layers": 34,
|
21 |
+
"num_key_value_heads": 4,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"query_pre_attn_scalar": 256,
|
24 |
+
"rms_norm_eps": 1e-06,
|
25 |
+
"rope_local_base_freq": 10000.0,
|
26 |
+
"rope_scaling": {
|
27 |
+
"factor": 8.0,
|
28 |
+
"rope_type": "linear"
|
29 |
+
},
|
30 |
+
"rope_theta": 1000000.0,
|
31 |
+
"sliding_window": 1024,
|
32 |
+
"sliding_window_pattern": 6,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.51.0.dev0",
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 262208
|
37 |
+
}
|
checkpoint-14148/generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 2,
|
3 |
+
"cache_implementation": "hybrid",
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": [
|
6 |
+
1,
|
7 |
+
106
|
8 |
+
],
|
9 |
+
"pad_token_id": 0,
|
10 |
+
"top_k": 64,
|
11 |
+
"top_p": 0.95,
|
12 |
+
"transformers_version": "4.51.0.dev0"
|
13 |
+
}
|
checkpoint-14148/global_step14148/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2372b29df2a252bb27e3545b04e9490998a8bc27d738b2b7f92fa5a4bcb0b8c
|
3 |
+
size 5820399644
|
checkpoint-14148/global_step14148/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:347a9a38c43f12c85e6f52b42483ea0af4aaa45d9ba93e5a5b43b078a171250a
|
3 |
+
size 5820399644
|
checkpoint-14148/global_step14148/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71e2726816800764be732f231917cb01ee0512df6264eaa16482f573e8a6956b
|
3 |
+
size 5820399644
|
checkpoint-14148/global_step14148/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c276d220e94c5bad83557010664753c22089751e0bb277694c0d51329ab5d6b3
|
3 |
+
size 5820399644
|
checkpoint-14148/global_step14148/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3edd6ae4b26a43712ab3732a4dc74b32fa197cc6d7a931ade37d8a44f087db85
|
3 |
+
size 5820399644
|
checkpoint-14148/global_step14148/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05a326e3147e10b2daf1c789de6ba7b96126f43433a32b3789b3b27c37a70554
|
3 |
+
size 5820399644
|
checkpoint-14148/global_step14148/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8767199519a1d346a774e58d9c61bde226422156b787ef2e17388099f18edd10
|
3 |
+
size 5820399644
|
checkpoint-14148/global_step14148/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87a19b09a37ed9609a3c5b0c24f8931ba8d023ff92b5381661a2d425b93d2cff
|
3 |
+
size 5820399644
|
checkpoint-14148/global_step14148/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92ea8ef479ce0871164ebf1dbf66be39293c3f3d2964a8718d2bbb6dc91287fd
|
3 |
+
size 225786
|
checkpoint-14148/global_step14148/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0556112d976e69d5ffd99a6d0950da8a62f025015b43e8b345cff2644839431d
|
3 |
+
size 225722
|
checkpoint-14148/global_step14148/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d859ec8484a44ddac0fa5ad837f8f5f98ae140db6a4b00932d51b78f6245ea9
|
3 |
+
size 225722
|
checkpoint-14148/global_step14148/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a58be778f10683a329467d391c8fe2db9933931636feb71550d08aadac562cca
|
3 |
+
size 225722
|
checkpoint-14148/global_step14148/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5df90f0ac68240570d3c55ff65daaadee8ec27a8232ca295874c32dca25ca595
|
3 |
+
size 225722
|
checkpoint-14148/global_step14148/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c16b5e9ef3217b83ab9e8553c500269330694a84d5b656b07387c5f2b4bda380
|
3 |
+
size 225722
|
checkpoint-14148/global_step14148/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a409e49032ea8898bf3ec175d984302d5ca0e8e3c57024d2a490a90e0a22fa0
|
3 |
+
size 225722
|
checkpoint-14148/global_step14148/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dd12fead55d2e36cf88b523a59a04eeff46dfc6dc368c120ccca6b9482a0659
|
3 |
+
size 225722
|
checkpoint-14148/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step14148
|
checkpoint-14148/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1235d7759942e94c23a7c65426e2ebde7e4804d9b7b01e5d32e9a6209f305e3b
|
3 |
+
size 4960531344
|
checkpoint-14148/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cdbc4dc009e66972a2801ed75c8bf1d264c6567f07c69c030ecfc92a56122cb
|
3 |
+
size 2800046672
|
checkpoint-14148/model.safetensors.index.json
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 7760526336
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.15.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.16.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.16.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.17.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.17.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.18.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.18.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
153 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
154 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
179 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
181 |
+
"model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
182 |
+
"model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
183 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
185 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
186 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
187 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
198 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
205 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
208 |
+
"model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
210 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
217 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
219 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
220 |
+
"model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
221 |
+
"model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
222 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
229 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
232 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
233 |
+
"model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
243 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
244 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
245 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
246 |
+
"model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
247 |
+
"model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
253 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
256 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
257 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
258 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
259 |
+
"model.layers.26.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"model.layers.26.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
266 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
267 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
268 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
269 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
270 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
271 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"model.layers.27.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.27.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
285 |
+
"model.layers.28.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
286 |
+
"model.layers.28.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
287 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
288 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
289 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
290 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
291 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
292 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
293 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
294 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
295 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.29.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.29.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
307 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
308 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
309 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
310 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
311 |
+
"model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
312 |
+
"model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
313 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
314 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
315 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
316 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
317 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
318 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
319 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.30.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.30.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.31.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.31.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.32.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.32.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.33.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.33.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
369 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
370 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
371 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
441 |
+
"model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
442 |
+
"model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
443 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
444 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
445 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
446 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
447 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
448 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
449 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
450 |
+
}
|
451 |
+
}
|
checkpoint-14148/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f5c4738c31c5c9a38e1f586256d59a0e8e7d02641b9b9af2afdbe078440aeb4
|
3 |
+
size 15984
|
checkpoint-14148/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d374b3390eb52ec7f6161c06272d4f26cb715692bdf2ad5374287b6de420ca3
|
3 |
+
size 15984
|
checkpoint-14148/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24111edc5a6a2994166cd410155ee3c630816d0fe21c13808ebd2a2ae45bc9d8
|
3 |
+
size 15984
|
checkpoint-14148/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:157b21eda1c7f898e519251deed08049767ffba123797289de56343a92ba7380
|
3 |
+
size 15984
|
checkpoint-14148/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ccb615552e5845759bc13aa2ae50c0525fbf941fa76ee2e2c20cb9838fe1995
|
3 |
+
size 15984
|
checkpoint-14148/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fcf720fc22147ce563d6f2c2f6f3d916a7e8b7af174b480d072b5c822e992aa
|
3 |
+
size 15984
|
checkpoint-14148/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d055d3b033dc8e6fc2a19aa95162960544ab94a903988874315efe4ed5aa8e13
|
3 |
+
size 15984
|
checkpoint-14148/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e03c685f2e019350bfdd41f006495a18690aacbccd7ffc1f40de827f433eb87
|
3 |
+
size 15984
|
checkpoint-14148/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:753a216a5f9ad0a1690e2477dea338f23dbfdc824e7dd3f857de8f8be85c1f41
|
3 |
+
size 1064
|
checkpoint-14148/special_tokens_map.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"boi_token": "<start_of_image>",
|
3 |
+
"bos_token": {
|
4 |
+
"content": "<bos>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
"eoi_token": "<end_of_image>",
|
11 |
+
"eos_token": {
|
12 |
+
"content": "<eos>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"image_token": "<image_soft_token>",
|
19 |
+
"pad_token": {
|
20 |
+
"content": "<pad>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false
|
25 |
+
},
|
26 |
+
"unk_token": {
|
27 |
+
"content": "<unk>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": false,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
checkpoint-14148/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
|
3 |
+
size 33384568
|
checkpoint-14148/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
|
3 |
+
size 4689074
|
checkpoint-14148/tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-14148/trainer_state.json
ADDED
@@ -0,0 +1,2087 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": 3144,
|
3 |
+
"best_metric": 1.1658307313919067,
|
4 |
+
"best_model_checkpoint": "models/gemma-3-4b-sft-full/checkpoint-3144",
|
5 |
+
"epoch": 9.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 14148,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0006361323155216285,
|
14 |
+
"grad_norm": 31.319606519809206,
|
15 |
+
"learning_rate": 1.2722646310432571e-08,
|
16 |
+
"loss": 2.0248,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.031806615776081425,
|
21 |
+
"grad_norm": 13.2120799093862,
|
22 |
+
"learning_rate": 6.361323155216286e-07,
|
23 |
+
"loss": 1.9103,
|
24 |
+
"step": 50
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.06361323155216285,
|
28 |
+
"grad_norm": 2.8305292907887694,
|
29 |
+
"learning_rate": 1.2722646310432571e-06,
|
30 |
+
"loss": 1.4434,
|
31 |
+
"step": 100
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.09541984732824428,
|
35 |
+
"grad_norm": 2.3110831279704738,
|
36 |
+
"learning_rate": 1.908396946564886e-06,
|
37 |
+
"loss": 1.3196,
|
38 |
+
"step": 150
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.1272264631043257,
|
42 |
+
"grad_norm": 2.3096762225567056,
|
43 |
+
"learning_rate": 2.5445292620865143e-06,
|
44 |
+
"loss": 1.3039,
|
45 |
+
"step": 200
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.15903307888040713,
|
49 |
+
"grad_norm": 2.2782572106396306,
|
50 |
+
"learning_rate": 3.1806615776081427e-06,
|
51 |
+
"loss": 1.2618,
|
52 |
+
"step": 250
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.19083969465648856,
|
56 |
+
"grad_norm": 2.2420875359580132,
|
57 |
+
"learning_rate": 3.816793893129772e-06,
|
58 |
+
"loss": 1.2501,
|
59 |
+
"step": 300
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.22264631043256997,
|
63 |
+
"grad_norm": 2.0330974831105215,
|
64 |
+
"learning_rate": 4.4529262086514e-06,
|
65 |
+
"loss": 1.2541,
|
66 |
+
"step": 350
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.2544529262086514,
|
70 |
+
"grad_norm": 2.1026569258639043,
|
71 |
+
"learning_rate": 5.0890585241730285e-06,
|
72 |
+
"loss": 1.2278,
|
73 |
+
"step": 400
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.2862595419847328,
|
77 |
+
"grad_norm": 2.0803892623652196,
|
78 |
+
"learning_rate": 5.725190839694656e-06,
|
79 |
+
"loss": 1.2173,
|
80 |
+
"step": 450
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.31806615776081426,
|
84 |
+
"grad_norm": 2.5887368846264684,
|
85 |
+
"learning_rate": 6.3613231552162854e-06,
|
86 |
+
"loss": 1.2241,
|
87 |
+
"step": 500
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.34987277353689566,
|
91 |
+
"grad_norm": 1.8616362535769346,
|
92 |
+
"learning_rate": 6.997455470737914e-06,
|
93 |
+
"loss": 1.1954,
|
94 |
+
"step": 550
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.3816793893129771,
|
98 |
+
"grad_norm": 2.2198054581544153,
|
99 |
+
"learning_rate": 7.633587786259543e-06,
|
100 |
+
"loss": 1.2207,
|
101 |
+
"step": 600
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.41348600508905853,
|
105 |
+
"grad_norm": 1.9458297082843083,
|
106 |
+
"learning_rate": 8.26972010178117e-06,
|
107 |
+
"loss": 1.2104,
|
108 |
+
"step": 650
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.44529262086513993,
|
112 |
+
"grad_norm": 1.754441697698081,
|
113 |
+
"learning_rate": 8.9058524173028e-06,
|
114 |
+
"loss": 1.1954,
|
115 |
+
"step": 700
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.4770992366412214,
|
119 |
+
"grad_norm": 1.9516730885650273,
|
120 |
+
"learning_rate": 9.54198473282443e-06,
|
121 |
+
"loss": 1.1962,
|
122 |
+
"step": 750
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.5089058524173028,
|
126 |
+
"grad_norm": 1.8788578410476755,
|
127 |
+
"learning_rate": 1.0178117048346057e-05,
|
128 |
+
"loss": 1.1955,
|
129 |
+
"step": 800
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.5407124681933843,
|
133 |
+
"grad_norm": 1.7660250423975214,
|
134 |
+
"learning_rate": 1.0814249363867686e-05,
|
135 |
+
"loss": 1.2029,
|
136 |
+
"step": 850
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.5725190839694656,
|
140 |
+
"grad_norm": 1.7319081555721738,
|
141 |
+
"learning_rate": 1.1450381679389312e-05,
|
142 |
+
"loss": 1.201,
|
143 |
+
"step": 900
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.6043256997455471,
|
147 |
+
"grad_norm": 1.7433405435098388,
|
148 |
+
"learning_rate": 1.2086513994910942e-05,
|
149 |
+
"loss": 1.1945,
|
150 |
+
"step": 950
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.6361323155216285,
|
154 |
+
"grad_norm": 1.6584922549922605,
|
155 |
+
"learning_rate": 1.2722646310432571e-05,
|
156 |
+
"loss": 1.188,
|
157 |
+
"step": 1000
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.6679389312977099,
|
161 |
+
"grad_norm": 1.694934894298546,
|
162 |
+
"learning_rate": 1.3358778625954198e-05,
|
163 |
+
"loss": 1.1853,
|
164 |
+
"step": 1050
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.6997455470737913,
|
168 |
+
"grad_norm": 1.8972752727827624,
|
169 |
+
"learning_rate": 1.3994910941475828e-05,
|
170 |
+
"loss": 1.1796,
|
171 |
+
"step": 1100
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.7315521628498728,
|
175 |
+
"grad_norm": 1.7794214888108801,
|
176 |
+
"learning_rate": 1.4631043256997457e-05,
|
177 |
+
"loss": 1.1879,
|
178 |
+
"step": 1150
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.7633587786259542,
|
182 |
+
"grad_norm": 1.7080167758006621,
|
183 |
+
"learning_rate": 1.5267175572519086e-05,
|
184 |
+
"loss": 1.2033,
|
185 |
+
"step": 1200
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.7951653944020356,
|
189 |
+
"grad_norm": 1.6732561680746716,
|
190 |
+
"learning_rate": 1.5903307888040712e-05,
|
191 |
+
"loss": 1.1729,
|
192 |
+
"step": 1250
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.8269720101781171,
|
196 |
+
"grad_norm": 2.0115920286242472,
|
197 |
+
"learning_rate": 1.653944020356234e-05,
|
198 |
+
"loss": 1.1798,
|
199 |
+
"step": 1300
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.8587786259541985,
|
203 |
+
"grad_norm": 1.5883913583214553,
|
204 |
+
"learning_rate": 1.717557251908397e-05,
|
205 |
+
"loss": 1.1761,
|
206 |
+
"step": 1350
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.8905852417302799,
|
210 |
+
"grad_norm": 1.5615231326127277,
|
211 |
+
"learning_rate": 1.78117048346056e-05,
|
212 |
+
"loss": 1.1807,
|
213 |
+
"step": 1400
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.9223918575063613,
|
217 |
+
"grad_norm": 1.6052692336601109,
|
218 |
+
"learning_rate": 1.844783715012723e-05,
|
219 |
+
"loss": 1.1872,
|
220 |
+
"step": 1450
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.9541984732824428,
|
224 |
+
"grad_norm": 1.6293394603925617,
|
225 |
+
"learning_rate": 1.908396946564886e-05,
|
226 |
+
"loss": 1.1821,
|
227 |
+
"step": 1500
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.9860050890585241,
|
231 |
+
"grad_norm": 1.9511097309507746,
|
232 |
+
"learning_rate": 1.9720101781170485e-05,
|
233 |
+
"loss": 1.193,
|
234 |
+
"step": 1550
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 1.0,
|
238 |
+
"eval_loss": 1.1915197372436523,
|
239 |
+
"eval_runtime": 50.604,
|
240 |
+
"eval_samples_per_second": 55.45,
|
241 |
+
"eval_steps_per_second": 1.739,
|
242 |
+
"step": 1572
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 1.0178117048346056,
|
246 |
+
"grad_norm": 1.699246916566911,
|
247 |
+
"learning_rate": 1.9999806716709255e-05,
|
248 |
+
"loss": 1.0668,
|
249 |
+
"step": 1600
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 1.049618320610687,
|
253 |
+
"grad_norm": 1.6215378174021484,
|
254 |
+
"learning_rate": 1.999850011488216e-05,
|
255 |
+
"loss": 0.9829,
|
256 |
+
"step": 1650
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 1.0814249363867685,
|
260 |
+
"grad_norm": 1.7868804206457551,
|
261 |
+
"learning_rate": 1.9995961032584046e-05,
|
262 |
+
"loss": 0.9782,
|
263 |
+
"step": 1700
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 1.11323155216285,
|
267 |
+
"grad_norm": 1.824863693326858,
|
268 |
+
"learning_rate": 1.9992189782798795e-05,
|
269 |
+
"loss": 0.9649,
|
270 |
+
"step": 1750
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 1.1450381679389312,
|
274 |
+
"grad_norm": 1.9389315988555975,
|
275 |
+
"learning_rate": 1.99871868303953e-05,
|
276 |
+
"loss": 0.9859,
|
277 |
+
"step": 1800
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 1.1768447837150127,
|
281 |
+
"grad_norm": 1.8613552819265144,
|
282 |
+
"learning_rate": 1.9980952792070175e-05,
|
283 |
+
"loss": 0.97,
|
284 |
+
"step": 1850
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 1.2086513994910941,
|
288 |
+
"grad_norm": 1.6290767219311002,
|
289 |
+
"learning_rate": 1.9973488436271728e-05,
|
290 |
+
"loss": 0.9898,
|
291 |
+
"step": 1900
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 1.2404580152671756,
|
295 |
+
"grad_norm": 1.9280005053128177,
|
296 |
+
"learning_rate": 1.996479468310524e-05,
|
297 |
+
"loss": 0.977,
|
298 |
+
"step": 1950
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 1.272264631043257,
|
302 |
+
"grad_norm": 1.8021715712875992,
|
303 |
+
"learning_rate": 1.9954872604219543e-05,
|
304 |
+
"loss": 0.9778,
|
305 |
+
"step": 2000
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 1.3040712468193385,
|
309 |
+
"grad_norm": 1.778983300178611,
|
310 |
+
"learning_rate": 1.994372342267493e-05,
|
311 |
+
"loss": 0.9754,
|
312 |
+
"step": 2050
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 1.33587786259542,
|
316 |
+
"grad_norm": 1.6139758020504216,
|
317 |
+
"learning_rate": 1.993134851279238e-05,
|
318 |
+
"loss": 0.9768,
|
319 |
+
"step": 2100
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 1.3676844783715012,
|
323 |
+
"grad_norm": 1.6159993769878525,
|
324 |
+
"learning_rate": 1.991774939998417e-05,
|
325 |
+
"loss": 0.977,
|
326 |
+
"step": 2150
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 1.3994910941475827,
|
330 |
+
"grad_norm": 1.7346584119107982,
|
331 |
+
"learning_rate": 1.9902927760565824e-05,
|
332 |
+
"loss": 1.0021,
|
333 |
+
"step": 2200
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 1.4312977099236641,
|
337 |
+
"grad_norm": 1.6348257679838059,
|
338 |
+
"learning_rate": 1.988688542154948e-05,
|
339 |
+
"loss": 0.9911,
|
340 |
+
"step": 2250
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 1.4631043256997456,
|
344 |
+
"grad_norm": 2.005161271222442,
|
345 |
+
"learning_rate": 1.98696243604187e-05,
|
346 |
+
"loss": 0.98,
|
347 |
+
"step": 2300
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 1.494910941475827,
|
351 |
+
"grad_norm": 1.6947935478149847,
|
352 |
+
"learning_rate": 1.9851146704884684e-05,
|
353 |
+
"loss": 0.9933,
|
354 |
+
"step": 2350
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 1.5267175572519083,
|
358 |
+
"grad_norm": 1.559288613818951,
|
359 |
+
"learning_rate": 1.9831454732624023e-05,
|
360 |
+
"loss": 0.9812,
|
361 |
+
"step": 2400
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 1.55852417302799,
|
365 |
+
"grad_norm": 1.6147458399643977,
|
366 |
+
"learning_rate": 1.9810550870997914e-05,
|
367 |
+
"loss": 0.9829,
|
368 |
+
"step": 2450
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 1.5903307888040712,
|
372 |
+
"grad_norm": 1.7200525728774254,
|
373 |
+
"learning_rate": 1.9788437696752965e-05,
|
374 |
+
"loss": 0.9827,
|
375 |
+
"step": 2500
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 1.6221374045801527,
|
379 |
+
"grad_norm": 1.5679464105011003,
|
380 |
+
"learning_rate": 1.9765117935703556e-05,
|
381 |
+
"loss": 0.9918,
|
382 |
+
"step": 2550
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 1.6539440203562341,
|
386 |
+
"grad_norm": 1.5684761038610553,
|
387 |
+
"learning_rate": 1.9740594462395844e-05,
|
388 |
+
"loss": 1.0035,
|
389 |
+
"step": 2600
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 1.6857506361323156,
|
393 |
+
"grad_norm": 1.6525710526384763,
|
394 |
+
"learning_rate": 1.9714870299753425e-05,
|
395 |
+
"loss": 0.9757,
|
396 |
+
"step": 2650
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 1.717557251908397,
|
400 |
+
"grad_norm": 1.61635439544328,
|
401 |
+
"learning_rate": 1.9687948618704713e-05,
|
402 |
+
"loss": 0.9878,
|
403 |
+
"step": 2700
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 1.7493638676844783,
|
407 |
+
"grad_norm": 1.552931766301823,
|
408 |
+
"learning_rate": 1.9659832737792065e-05,
|
409 |
+
"loss": 0.9926,
|
410 |
+
"step": 2750
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 1.78117048346056,
|
414 |
+
"grad_norm": 1.7462958660917196,
|
415 |
+
"learning_rate": 1.963052612276272e-05,
|
416 |
+
"loss": 0.9923,
|
417 |
+
"step": 2800
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 1.8129770992366412,
|
421 |
+
"grad_norm": 1.541467107392074,
|
422 |
+
"learning_rate": 1.9600032386141578e-05,
|
423 |
+
"loss": 0.9883,
|
424 |
+
"step": 2850
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 1.8447837150127226,
|
428 |
+
"grad_norm": 1.60142808575721,
|
429 |
+
"learning_rate": 1.9568355286785916e-05,
|
430 |
+
"loss": 0.9848,
|
431 |
+
"step": 2900
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 1.876590330788804,
|
435 |
+
"grad_norm": 1.628212808465854,
|
436 |
+
"learning_rate": 1.9535498729422034e-05,
|
437 |
+
"loss": 0.981,
|
438 |
+
"step": 2950
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 1.9083969465648853,
|
442 |
+
"grad_norm": 1.589079219019998,
|
443 |
+
"learning_rate": 1.950146676416393e-05,
|
444 |
+
"loss": 0.9938,
|
445 |
+
"step": 3000
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 1.940203562340967,
|
449 |
+
"grad_norm": 1.5927647305457868,
|
450 |
+
"learning_rate": 1.9466263586014062e-05,
|
451 |
+
"loss": 0.9831,
|
452 |
+
"step": 3050
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 1.9720101781170483,
|
456 |
+
"grad_norm": 1.6181088935396841,
|
457 |
+
"learning_rate": 1.9429893534346248e-05,
|
458 |
+
"loss": 0.9738,
|
459 |
+
"step": 3100
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 2.0,
|
463 |
+
"eval_loss": 1.1658307313919067,
|
464 |
+
"eval_runtime": 57.664,
|
465 |
+
"eval_samples_per_second": 48.661,
|
466 |
+
"eval_steps_per_second": 1.526,
|
467 |
+
"step": 3144
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 2.00381679389313,
|
471 |
+
"grad_norm": 2.8157430444252833,
|
472 |
+
"learning_rate": 1.9392361092370756e-05,
|
473 |
+
"loss": 0.9372,
|
474 |
+
"step": 3150
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 2.035623409669211,
|
478 |
+
"grad_norm": 1.8202205896718766,
|
479 |
+
"learning_rate": 1.9353670886581683e-05,
|
480 |
+
"loss": 0.6118,
|
481 |
+
"step": 3200
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 2.0674300254452924,
|
485 |
+
"grad_norm": 1.8024719083066718,
|
486 |
+
"learning_rate": 1.9313827686186664e-05,
|
487 |
+
"loss": 0.5956,
|
488 |
+
"step": 3250
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 2.099236641221374,
|
492 |
+
"grad_norm": 1.8065831151097012,
|
493 |
+
"learning_rate": 1.927283640251898e-05,
|
494 |
+
"loss": 0.615,
|
495 |
+
"step": 3300
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 2.1310432569974553,
|
499 |
+
"grad_norm": 1.93182684100521,
|
500 |
+
"learning_rate": 1.923070208843216e-05,
|
501 |
+
"loss": 0.6079,
|
502 |
+
"step": 3350
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"epoch": 2.162849872773537,
|
506 |
+
"grad_norm": 1.8738788734317153,
|
507 |
+
"learning_rate": 1.9187429937677136e-05,
|
508 |
+
"loss": 0.607,
|
509 |
+
"step": 3400
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 2.1946564885496183,
|
513 |
+
"grad_norm": 1.8040300513160983,
|
514 |
+
"learning_rate": 1.9143025284262022e-05,
|
515 |
+
"loss": 0.6085,
|
516 |
+
"step": 3450
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"epoch": 2.2264631043257,
|
520 |
+
"grad_norm": 1.8986773569695647,
|
521 |
+
"learning_rate": 1.909749360179461e-05,
|
522 |
+
"loss": 0.6145,
|
523 |
+
"step": 3500
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"epoch": 2.258269720101781,
|
527 |
+
"grad_norm": 1.9163165829127622,
|
528 |
+
"learning_rate": 1.9050840502807665e-05,
|
529 |
+
"loss": 0.6169,
|
530 |
+
"step": 3550
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 2.2900763358778624,
|
534 |
+
"grad_norm": 2.0342511222836657,
|
535 |
+
"learning_rate": 1.9003071738067073e-05,
|
536 |
+
"loss": 0.6181,
|
537 |
+
"step": 3600
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 2.321882951653944,
|
541 |
+
"grad_norm": 1.9022311954341746,
|
542 |
+
"learning_rate": 1.895419319586298e-05,
|
543 |
+
"loss": 0.6322,
|
544 |
+
"step": 3650
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 2.3536895674300253,
|
548 |
+
"grad_norm": 1.947735727576319,
|
549 |
+
"learning_rate": 1.890421090128395e-05,
|
550 |
+
"loss": 0.6261,
|
551 |
+
"step": 3700
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 2.385496183206107,
|
555 |
+
"grad_norm": 1.8908602175645888,
|
556 |
+
"learning_rate": 1.8853131015474278e-05,
|
557 |
+
"loss": 0.6241,
|
558 |
+
"step": 3750
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 2.4173027989821882,
|
562 |
+
"grad_norm": 1.8428847331642595,
|
563 |
+
"learning_rate": 1.8800959834874534e-05,
|
564 |
+
"loss": 0.6247,
|
565 |
+
"step": 3800
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 2.4491094147582695,
|
569 |
+
"grad_norm": 1.9386784496016072,
|
570 |
+
"learning_rate": 1.8747703790445412e-05,
|
571 |
+
"loss": 0.6369,
|
572 |
+
"step": 3850
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 2.480916030534351,
|
576 |
+
"grad_norm": 1.8110474855626102,
|
577 |
+
"learning_rate": 1.8693369446875008e-05,
|
578 |
+
"loss": 0.6352,
|
579 |
+
"step": 3900
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 2.5127226463104324,
|
583 |
+
"grad_norm": 1.8744360271519491,
|
584 |
+
"learning_rate": 1.8637963501769625e-05,
|
585 |
+
"loss": 0.6402,
|
586 |
+
"step": 3950
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 2.544529262086514,
|
590 |
+
"grad_norm": 1.858724398900357,
|
591 |
+
"learning_rate": 1.858149278482817e-05,
|
592 |
+
"loss": 0.6459,
|
593 |
+
"step": 4000
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 2.5763358778625953,
|
597 |
+
"grad_norm": 1.8627524401678055,
|
598 |
+
"learning_rate": 1.8523964257000288e-05,
|
599 |
+
"loss": 0.6276,
|
600 |
+
"step": 4050
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 2.608142493638677,
|
604 |
+
"grad_norm": 1.9220180062265788,
|
605 |
+
"learning_rate": 1.8465385009628308e-05,
|
606 |
+
"loss": 0.6481,
|
607 |
+
"step": 4100
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 2.6399491094147582,
|
611 |
+
"grad_norm": 1.9319620445548449,
|
612 |
+
"learning_rate": 1.8405762263573108e-05,
|
613 |
+
"loss": 0.6344,
|
614 |
+
"step": 4150
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 2.67175572519084,
|
618 |
+
"grad_norm": 1.8442743167506148,
|
619 |
+
"learning_rate": 1.834510336832405e-05,
|
620 |
+
"loss": 0.6418,
|
621 |
+
"step": 4200
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 2.703562340966921,
|
625 |
+
"grad_norm": 1.8919128966016239,
|
626 |
+
"learning_rate": 1.8283415801093007e-05,
|
627 |
+
"loss": 0.6455,
|
628 |
+
"step": 4250
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"epoch": 2.7353689567430024,
|
632 |
+
"grad_norm": 1.79572731114352,
|
633 |
+
"learning_rate": 1.8220707165892682e-05,
|
634 |
+
"loss": 0.6474,
|
635 |
+
"step": 4300
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 2.767175572519084,
|
639 |
+
"grad_norm": 1.8916208552532916,
|
640 |
+
"learning_rate": 1.815698519259929e-05,
|
641 |
+
"loss": 0.6479,
|
642 |
+
"step": 4350
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 2.7989821882951653,
|
646 |
+
"grad_norm": 1.8754600469553322,
|
647 |
+
"learning_rate": 1.8092257735999734e-05,
|
648 |
+
"loss": 0.6549,
|
649 |
+
"step": 4400
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 2.830788804071247,
|
653 |
+
"grad_norm": 1.8972086051601613,
|
654 |
+
"learning_rate": 1.8026532774823343e-05,
|
655 |
+
"loss": 0.6397,
|
656 |
+
"step": 4450
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 2.8625954198473282,
|
660 |
+
"grad_norm": 1.8335920924146587,
|
661 |
+
"learning_rate": 1.7959818410758395e-05,
|
662 |
+
"loss": 0.6379,
|
663 |
+
"step": 4500
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 2.8944020356234095,
|
667 |
+
"grad_norm": 2.010899629666033,
|
668 |
+
"learning_rate": 1.789212286745342e-05,
|
669 |
+
"loss": 0.645,
|
670 |
+
"step": 4550
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 2.926208651399491,
|
674 |
+
"grad_norm": 1.854046640562392,
|
675 |
+
"learning_rate": 1.7823454489503526e-05,
|
676 |
+
"loss": 0.6491,
|
677 |
+
"step": 4600
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"epoch": 2.9580152671755724,
|
681 |
+
"grad_norm": 1.9582134927711392,
|
682 |
+
"learning_rate": 1.775382174142177e-05,
|
683 |
+
"loss": 0.6542,
|
684 |
+
"step": 4650
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 2.989821882951654,
|
688 |
+
"grad_norm": 1.851650468210065,
|
689 |
+
"learning_rate": 1.768323320659578e-05,
|
690 |
+
"loss": 0.6542,
|
691 |
+
"step": 4700
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 3.0,
|
695 |
+
"eval_loss": 1.25302255153656,
|
696 |
+
"eval_runtime": 57.2963,
|
697 |
+
"eval_samples_per_second": 48.973,
|
698 |
+
"eval_steps_per_second": 1.536,
|
699 |
+
"step": 4716
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 3.0216284987277353,
|
703 |
+
"grad_norm": 1.9776148010713264,
|
704 |
+
"learning_rate": 1.7611697586229695e-05,
|
705 |
+
"loss": 0.4254,
|
706 |
+
"step": 4750
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 3.053435114503817,
|
710 |
+
"grad_norm": 2.1156326922920994,
|
711 |
+
"learning_rate": 1.753922369827162e-05,
|
712 |
+
"loss": 0.3248,
|
713 |
+
"step": 4800
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 3.0852417302798982,
|
717 |
+
"grad_norm": 1.927754824109064,
|
718 |
+
"learning_rate": 1.7465820476326656e-05,
|
719 |
+
"loss": 0.328,
|
720 |
+
"step": 4850
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 3.1170483460559795,
|
724 |
+
"grad_norm": 1.984505722526154,
|
725 |
+
"learning_rate": 1.7391496968555667e-05,
|
726 |
+
"loss": 0.3325,
|
727 |
+
"step": 4900
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 3.148854961832061,
|
731 |
+
"grad_norm": 2.070364334889199,
|
732 |
+
"learning_rate": 1.7316262336559978e-05,
|
733 |
+
"loss": 0.3348,
|
734 |
+
"step": 4950
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 3.1806615776081424,
|
738 |
+
"grad_norm": 1.9450509022734594,
|
739 |
+
"learning_rate": 1.7240125854252043e-05,
|
740 |
+
"loss": 0.3413,
|
741 |
+
"step": 5000
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 3.212468193384224,
|
745 |
+
"grad_norm": 2.0171683252659323,
|
746 |
+
"learning_rate": 1.7163096906712267e-05,
|
747 |
+
"loss": 0.3353,
|
748 |
+
"step": 5050
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 3.2442748091603053,
|
752 |
+
"grad_norm": 2.0051713529489046,
|
753 |
+
"learning_rate": 1.708518498903216e-05,
|
754 |
+
"loss": 0.3411,
|
755 |
+
"step": 5100
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 3.276081424936387,
|
759 |
+
"grad_norm": 2.0973923846500213,
|
760 |
+
"learning_rate": 1.7006399705143905e-05,
|
761 |
+
"loss": 0.3421,
|
762 |
+
"step": 5150
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"epoch": 3.3078880407124682,
|
766 |
+
"grad_norm": 2.0572445637964103,
|
767 |
+
"learning_rate": 1.692675076663651e-05,
|
768 |
+
"loss": 0.338,
|
769 |
+
"step": 5200
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 3.3396946564885495,
|
773 |
+
"grad_norm": 2.1760429565142223,
|
774 |
+
"learning_rate": 1.6846247991558686e-05,
|
775 |
+
"loss": 0.3506,
|
776 |
+
"step": 5250
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 3.371501272264631,
|
780 |
+
"grad_norm": 1.9297734638867776,
|
781 |
+
"learning_rate": 1.6764901303208632e-05,
|
782 |
+
"loss": 0.344,
|
783 |
+
"step": 5300
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 3.4033078880407124,
|
787 |
+
"grad_norm": 2.051646120204668,
|
788 |
+
"learning_rate": 1.6682720728910815e-05,
|
789 |
+
"loss": 0.3531,
|
790 |
+
"step": 5350
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 3.435114503816794,
|
794 |
+
"grad_norm": 2.053007809243884,
|
795 |
+
"learning_rate": 1.659971639877992e-05,
|
796 |
+
"loss": 0.356,
|
797 |
+
"step": 5400
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 3.4669211195928753,
|
801 |
+
"grad_norm": 2.113810517440616,
|
802 |
+
"learning_rate": 1.6515898544472172e-05,
|
803 |
+
"loss": 0.3544,
|
804 |
+
"step": 5450
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 3.4987277353689565,
|
808 |
+
"grad_norm": 2.0372048460483207,
|
809 |
+
"learning_rate": 1.6431277497924093e-05,
|
810 |
+
"loss": 0.3461,
|
811 |
+
"step": 5500
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 3.530534351145038,
|
815 |
+
"grad_norm": 2.0430461667046753,
|
816 |
+
"learning_rate": 1.6345863690078942e-05,
|
817 |
+
"loss": 0.3527,
|
818 |
+
"step": 5550
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 3.5623409669211195,
|
822 |
+
"grad_norm": 2.0399250101984485,
|
823 |
+
"learning_rate": 1.6259667649600907e-05,
|
824 |
+
"loss": 0.3584,
|
825 |
+
"step": 5600
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 3.594147582697201,
|
829 |
+
"grad_norm": 2.1539893126413165,
|
830 |
+
"learning_rate": 1.6172700001577286e-05,
|
831 |
+
"loss": 0.3599,
|
832 |
+
"step": 5650
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 3.6259541984732824,
|
836 |
+
"grad_norm": 2.158545963475489,
|
837 |
+
"learning_rate": 1.6084971466208764e-05,
|
838 |
+
"loss": 0.3639,
|
839 |
+
"step": 5700
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 3.6577608142493636,
|
843 |
+
"grad_norm": 2.133349813061679,
|
844 |
+
"learning_rate": 1.599649285748798e-05,
|
845 |
+
"loss": 0.3604,
|
846 |
+
"step": 5750
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"epoch": 3.6895674300254453,
|
850 |
+
"grad_norm": 2.1126907045423136,
|
851 |
+
"learning_rate": 1.5907275081866504e-05,
|
852 |
+
"loss": 0.3572,
|
853 |
+
"step": 5800
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"epoch": 3.721374045801527,
|
857 |
+
"grad_norm": 2.1536592654492006,
|
858 |
+
"learning_rate": 1.5817329136910463e-05,
|
859 |
+
"loss": 0.3597,
|
860 |
+
"step": 5850
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 3.753180661577608,
|
864 |
+
"grad_norm": 1.9820017146238096,
|
865 |
+
"learning_rate": 1.5726666109944887e-05,
|
866 |
+
"loss": 0.366,
|
867 |
+
"step": 5900
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 3.7849872773536894,
|
871 |
+
"grad_norm": 2.0394074001285167,
|
872 |
+
"learning_rate": 1.563529717668702e-05,
|
873 |
+
"loss": 0.3586,
|
874 |
+
"step": 5950
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 3.816793893129771,
|
878 |
+
"grad_norm": 2.0797434739007548,
|
879 |
+
"learning_rate": 1.5543233599868744e-05,
|
880 |
+
"loss": 0.3611,
|
881 |
+
"step": 6000
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 3.8486005089058524,
|
885 |
+
"grad_norm": 1.9847509894940687,
|
886 |
+
"learning_rate": 1.5450486727848217e-05,
|
887 |
+
"loss": 0.3682,
|
888 |
+
"step": 6050
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"epoch": 3.880407124681934,
|
892 |
+
"grad_norm": 2.0762467778933806,
|
893 |
+
"learning_rate": 1.535706799321106e-05,
|
894 |
+
"loss": 0.367,
|
895 |
+
"step": 6100
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"epoch": 3.9122137404580153,
|
899 |
+
"grad_norm": 2.08727307746701,
|
900 |
+
"learning_rate": 1.526298891136105e-05,
|
901 |
+
"loss": 0.3661,
|
902 |
+
"step": 6150
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 3.9440203562340965,
|
906 |
+
"grad_norm": 2.2966942638832544,
|
907 |
+
"learning_rate": 1.5168261079100695e-05,
|
908 |
+
"loss": 0.362,
|
909 |
+
"step": 6200
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 3.975826972010178,
|
913 |
+
"grad_norm": 2.052981094095626,
|
914 |
+
"learning_rate": 1.5072896173201697e-05,
|
915 |
+
"loss": 0.3692,
|
916 |
+
"step": 6250
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 4.0,
|
920 |
+
"eval_loss": 1.4977455139160156,
|
921 |
+
"eval_runtime": 51.4362,
|
922 |
+
"eval_samples_per_second": 54.553,
|
923 |
+
"eval_steps_per_second": 1.711,
|
924 |
+
"step": 6288
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 4.00763358778626,
|
928 |
+
"grad_norm": 2.107958347254252,
|
929 |
+
"learning_rate": 1.4976905948965637e-05,
|
930 |
+
"loss": 0.3142,
|
931 |
+
"step": 6300
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 4.039440203562341,
|
935 |
+
"grad_norm": 1.9505610066311394,
|
936 |
+
"learning_rate": 1.4880302238774911e-05,
|
937 |
+
"loss": 0.1694,
|
938 |
+
"step": 6350
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 4.071246819338422,
|
942 |
+
"grad_norm": 1.8629359372754337,
|
943 |
+
"learning_rate": 1.4783096950634211e-05,
|
944 |
+
"loss": 0.1727,
|
945 |
+
"step": 6400
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 4.103053435114504,
|
949 |
+
"grad_norm": 1.8272931243832953,
|
950 |
+
"learning_rate": 1.468530206670265e-05,
|
951 |
+
"loss": 0.1707,
|
952 |
+
"step": 6450
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 4.134860050890585,
|
956 |
+
"grad_norm": 1.982558356194926,
|
957 |
+
"learning_rate": 1.4586929641816783e-05,
|
958 |
+
"loss": 0.1757,
|
959 |
+
"step": 6500
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 4.166666666666667,
|
963 |
+
"grad_norm": 1.7448326286779277,
|
964 |
+
"learning_rate": 1.4487991802004625e-05,
|
965 |
+
"loss": 0.1777,
|
966 |
+
"step": 6550
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"epoch": 4.198473282442748,
|
970 |
+
"grad_norm": 1.9280680517187911,
|
971 |
+
"learning_rate": 1.4388500742990934e-05,
|
972 |
+
"loss": 0.1785,
|
973 |
+
"step": 6600
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"epoch": 4.230279898218829,
|
977 |
+
"grad_norm": 1.9089795547388508,
|
978 |
+
"learning_rate": 1.4288468728693889e-05,
|
979 |
+
"loss": 0.181,
|
980 |
+
"step": 6650
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 4.262086513994911,
|
984 |
+
"grad_norm": 2.0037836680476566,
|
985 |
+
"learning_rate": 1.4187908089713348e-05,
|
986 |
+
"loss": 0.1823,
|
987 |
+
"step": 6700
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 4.293893129770993,
|
991 |
+
"grad_norm": 1.8739930764604456,
|
992 |
+
"learning_rate": 1.4086831221810897e-05,
|
993 |
+
"loss": 0.1812,
|
994 |
+
"step": 6750
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 4.325699745547074,
|
998 |
+
"grad_norm": 1.9039560558559352,
|
999 |
+
"learning_rate": 1.3985250584381884e-05,
|
1000 |
+
"loss": 0.1848,
|
1001 |
+
"step": 6800
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"epoch": 4.357506361323155,
|
1005 |
+
"grad_norm": 1.979148934201314,
|
1006 |
+
"learning_rate": 1.3883178698919578e-05,
|
1007 |
+
"loss": 0.183,
|
1008 |
+
"step": 6850
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"epoch": 4.3893129770992365,
|
1012 |
+
"grad_norm": 2.037387611365519,
|
1013 |
+
"learning_rate": 1.378062814747168e-05,
|
1014 |
+
"loss": 0.1858,
|
1015 |
+
"step": 6900
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"epoch": 4.421119592875318,
|
1019 |
+
"grad_norm": 2.081816352916778,
|
1020 |
+
"learning_rate": 1.3677611571089406e-05,
|
1021 |
+
"loss": 0.1889,
|
1022 |
+
"step": 6950
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 4.4529262086514,
|
1026 |
+
"grad_norm": 2.0722431553233993,
|
1027 |
+
"learning_rate": 1.3574141668269235e-05,
|
1028 |
+
"loss": 0.1876,
|
1029 |
+
"step": 7000
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 4.484732824427481,
|
1033 |
+
"grad_norm": 1.893880597719728,
|
1034 |
+
"learning_rate": 1.3470231193387639e-05,
|
1035 |
+
"loss": 0.1868,
|
1036 |
+
"step": 7050
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 4.516539440203562,
|
1040 |
+
"grad_norm": 2.136980665093255,
|
1041 |
+
"learning_rate": 1.3365892955128876e-05,
|
1042 |
+
"loss": 0.1925,
|
1043 |
+
"step": 7100
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"epoch": 4.548346055979644,
|
1047 |
+
"grad_norm": 2.2126003717690144,
|
1048 |
+
"learning_rate": 1.326113981490611e-05,
|
1049 |
+
"loss": 0.1868,
|
1050 |
+
"step": 7150
|
1051 |
+
},
|
1052 |
+
{
|
1053 |
+
"epoch": 4.580152671755725,
|
1054 |
+
"grad_norm": 2.295568251011161,
|
1055 |
+
"learning_rate": 1.315598468527604e-05,
|
1056 |
+
"loss": 0.1855,
|
1057 |
+
"step": 7200
|
1058 |
+
},
|
1059 |
+
{
|
1060 |
+
"epoch": 4.611959287531807,
|
1061 |
+
"grad_norm": 1.886004237984628,
|
1062 |
+
"learning_rate": 1.30504405283472e-05,
|
1063 |
+
"loss": 0.1891,
|
1064 |
+
"step": 7250
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 4.643765903307888,
|
1068 |
+
"grad_norm": 2.0731100810122065,
|
1069 |
+
"learning_rate": 1.294452035418218e-05,
|
1070 |
+
"loss": 0.1901,
|
1071 |
+
"step": 7300
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 4.675572519083969,
|
1075 |
+
"grad_norm": 1.8758598657873944,
|
1076 |
+
"learning_rate": 1.2838237219193897e-05,
|
1077 |
+
"loss": 0.1898,
|
1078 |
+
"step": 7350
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"epoch": 4.707379134860051,
|
1082 |
+
"grad_norm": 1.9515874051409456,
|
1083 |
+
"learning_rate": 1.2731604224536208e-05,
|
1084 |
+
"loss": 0.1895,
|
1085 |
+
"step": 7400
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"epoch": 4.739185750636132,
|
1089 |
+
"grad_norm": 1.972736566907763,
|
1090 |
+
"learning_rate": 1.262463451448895e-05,
|
1091 |
+
"loss": 0.1888,
|
1092 |
+
"step": 7450
|
1093 |
+
},
|
1094 |
+
{
|
1095 |
+
"epoch": 4.770992366412214,
|
1096 |
+
"grad_norm": 1.9482783400297305,
|
1097 |
+
"learning_rate": 1.2517341274837702e-05,
|
1098 |
+
"loss": 0.1931,
|
1099 |
+
"step": 7500
|
1100 |
+
},
|
1101 |
+
{
|
1102 |
+
"epoch": 4.802798982188295,
|
1103 |
+
"grad_norm": 1.8471591343739595,
|
1104 |
+
"learning_rate": 1.2409737731248418e-05,
|
1105 |
+
"loss": 0.1903,
|
1106 |
+
"step": 7550
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 4.8346055979643765,
|
1110 |
+
"grad_norm": 2.025410052096641,
|
1111 |
+
"learning_rate": 1.2301837147637137e-05,
|
1112 |
+
"loss": 0.1926,
|
1113 |
+
"step": 7600
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 4.866412213740458,
|
1117 |
+
"grad_norm": 1.8904775058623584,
|
1118 |
+
"learning_rate": 1.2193652824535e-05,
|
1119 |
+
"loss": 0.1909,
|
1120 |
+
"step": 7650
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"epoch": 4.898218829516539,
|
1124 |
+
"grad_norm": 2.0404591880691405,
|
1125 |
+
"learning_rate": 1.2085198097448732e-05,
|
1126 |
+
"loss": 0.1909,
|
1127 |
+
"step": 7700
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"epoch": 4.930025445292621,
|
1131 |
+
"grad_norm": 1.9452174397216788,
|
1132 |
+
"learning_rate": 1.197648633521681e-05,
|
1133 |
+
"loss": 0.19,
|
1134 |
+
"step": 7750
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 4.961832061068702,
|
1138 |
+
"grad_norm": 2.098087417526516,
|
1139 |
+
"learning_rate": 1.1867530938361557e-05,
|
1140 |
+
"loss": 0.1953,
|
1141 |
+
"step": 7800
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"epoch": 4.993638676844784,
|
1145 |
+
"grad_norm": 2.028699161436086,
|
1146 |
+
"learning_rate": 1.1758345337437284e-05,
|
1147 |
+
"loss": 0.1932,
|
1148 |
+
"step": 7850
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 5.0,
|
1152 |
+
"eval_loss": 1.913898229598999,
|
1153 |
+
"eval_runtime": 54.0702,
|
1154 |
+
"eval_samples_per_second": 51.896,
|
1155 |
+
"eval_steps_per_second": 1.628,
|
1156 |
+
"step": 7860
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 5.025445292620865,
|
1160 |
+
"grad_norm": 1.4793683076824136,
|
1161 |
+
"learning_rate": 1.164894299137476e-05,
|
1162 |
+
"loss": 0.1166,
|
1163 |
+
"step": 7900
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"epoch": 5.057251908396947,
|
1167 |
+
"grad_norm": 1.5651227153942533,
|
1168 |
+
"learning_rate": 1.1539337385822179e-05,
|
1169 |
+
"loss": 0.1006,
|
1170 |
+
"step": 7950
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"epoch": 5.089058524173028,
|
1174 |
+
"grad_norm": 1.7359295760816373,
|
1175 |
+
"learning_rate": 1.1429542031482828e-05,
|
1176 |
+
"loss": 0.1037,
|
1177 |
+
"step": 8000
|
1178 |
+
},
|
1179 |
+
{
|
1180 |
+
"epoch": 5.120865139949109,
|
1181 |
+
"grad_norm": 1.5516562484547498,
|
1182 |
+
"learning_rate": 1.1319570462449664e-05,
|
1183 |
+
"loss": 0.1073,
|
1184 |
+
"step": 8050
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 5.152671755725191,
|
1188 |
+
"grad_norm": 1.7147421352890893,
|
1189 |
+
"learning_rate": 1.120943623453703e-05,
|
1190 |
+
"loss": 0.1048,
|
1191 |
+
"step": 8100
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 5.184478371501272,
|
1195 |
+
"grad_norm": 1.588020821919146,
|
1196 |
+
"learning_rate": 1.1099152923609654e-05,
|
1197 |
+
"loss": 0.1046,
|
1198 |
+
"step": 8150
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"epoch": 5.216284987277354,
|
1202 |
+
"grad_norm": 1.4744529210130621,
|
1203 |
+
"learning_rate": 1.0988734123909218e-05,
|
1204 |
+
"loss": 0.1053,
|
1205 |
+
"step": 8200
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"epoch": 5.248091603053435,
|
1209 |
+
"grad_norm": 1.5149467562017078,
|
1210 |
+
"learning_rate": 1.0878193446378633e-05,
|
1211 |
+
"loss": 0.1067,
|
1212 |
+
"step": 8250
|
1213 |
+
},
|
1214 |
+
{
|
1215 |
+
"epoch": 5.2798982188295165,
|
1216 |
+
"grad_norm": 1.641740858676932,
|
1217 |
+
"learning_rate": 1.076754451698427e-05,
|
1218 |
+
"loss": 0.1052,
|
1219 |
+
"step": 8300
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"epoch": 5.311704834605598,
|
1223 |
+
"grad_norm": 1.9805138911324567,
|
1224 |
+
"learning_rate": 1.0656800975036328e-05,
|
1225 |
+
"loss": 0.1073,
|
1226 |
+
"step": 8350
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 5.34351145038168,
|
1230 |
+
"grad_norm": 1.538007502423292,
|
1231 |
+
"learning_rate": 1.0545976471507573e-05,
|
1232 |
+
"loss": 0.1092,
|
1233 |
+
"step": 8400
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 5.375318066157761,
|
1237 |
+
"grad_norm": 1.5971589586731525,
|
1238 |
+
"learning_rate": 1.0435084667350619e-05,
|
1239 |
+
"loss": 0.1075,
|
1240 |
+
"step": 8450
|
1241 |
+
},
|
1242 |
+
{
|
1243 |
+
"epoch": 5.407124681933842,
|
1244 |
+
"grad_norm": 1.690135861247903,
|
1245 |
+
"learning_rate": 1.0324139231813997e-05,
|
1246 |
+
"loss": 0.1074,
|
1247 |
+
"step": 8500
|
1248 |
+
},
|
1249 |
+
{
|
1250 |
+
"epoch": 5.438931297709924,
|
1251 |
+
"grad_norm": 1.6897524323080446,
|
1252 |
+
"learning_rate": 1.0213153840757198e-05,
|
1253 |
+
"loss": 0.1099,
|
1254 |
+
"step": 8550
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"epoch": 5.470737913486005,
|
1258 |
+
"grad_norm": 1.6020111115696878,
|
1259 |
+
"learning_rate": 1.0102142174964883e-05,
|
1260 |
+
"loss": 0.1089,
|
1261 |
+
"step": 8600
|
1262 |
+
},
|
1263 |
+
{
|
1264 |
+
"epoch": 5.502544529262087,
|
1265 |
+
"grad_norm": 1.721827372559917,
|
1266 |
+
"learning_rate": 9.991117918460518e-06,
|
1267 |
+
"loss": 0.1085,
|
1268 |
+
"step": 8650
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 5.534351145038168,
|
1272 |
+
"grad_norm": 1.5374549183894768,
|
1273 |
+
"learning_rate": 9.880094756819572e-06,
|
1274 |
+
"loss": 0.1088,
|
1275 |
+
"step": 8700
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 5.566157760814249,
|
1279 |
+
"grad_norm": 1.63155554721324,
|
1280 |
+
"learning_rate": 9.769086375482561e-06,
|
1281 |
+
"loss": 0.1095,
|
1282 |
+
"step": 8750
|
1283 |
+
},
|
1284 |
+
{
|
1285 |
+
"epoch": 5.597964376590331,
|
1286 |
+
"grad_norm": 1.6722391499109936,
|
1287 |
+
"learning_rate": 9.658106458068086e-06,
|
1288 |
+
"loss": 0.1097,
|
1289 |
+
"step": 8800
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"epoch": 5.629770992366412,
|
1293 |
+
"grad_norm": 1.6914082156675518,
|
1294 |
+
"learning_rate": 9.547168684686088e-06,
|
1295 |
+
"loss": 0.1092,
|
1296 |
+
"step": 8850
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"epoch": 5.661577608142494,
|
1300 |
+
"grad_norm": 1.6060594589970834,
|
1301 |
+
"learning_rate": 9.436286730251568e-06,
|
1302 |
+
"loss": 0.1109,
|
1303 |
+
"step": 8900
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"epoch": 5.693384223918575,
|
1307 |
+
"grad_norm": 1.6457178552761271,
|
1308 |
+
"learning_rate": 9.32547426279892e-06,
|
1309 |
+
"loss": 0.1101,
|
1310 |
+
"step": 8950
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 5.7251908396946565,
|
1314 |
+
"grad_norm": 1.6736941545247992,
|
1315 |
+
"learning_rate": 9.214744941797115e-06,
|
1316 |
+
"loss": 0.1087,
|
1317 |
+
"step": 9000
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 5.756997455470738,
|
1321 |
+
"grad_norm": 1.6655682373835654,
|
1322 |
+
"learning_rate": 9.104112416465949e-06,
|
1323 |
+
"loss": 0.1072,
|
1324 |
+
"step": 9050
|
1325 |
+
},
|
1326 |
+
{
|
1327 |
+
"epoch": 5.788804071246819,
|
1328 |
+
"grad_norm": 1.716312631900298,
|
1329 |
+
"learning_rate": 8.993590324093548e-06,
|
1330 |
+
"loss": 0.1096,
|
1331 |
+
"step": 9100
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 5.820610687022901,
|
1335 |
+
"grad_norm": 1.6302159083496506,
|
1336 |
+
"learning_rate": 8.883192288355362e-06,
|
1337 |
+
"loss": 0.1093,
|
1338 |
+
"step": 9150
|
1339 |
+
},
|
1340 |
+
{
|
1341 |
+
"epoch": 5.852417302798982,
|
1342 |
+
"grad_norm": 1.6265328321818522,
|
1343 |
+
"learning_rate": 8.772931917634792e-06,
|
1344 |
+
"loss": 0.1101,
|
1345 |
+
"step": 9200
|
1346 |
+
},
|
1347 |
+
{
|
1348 |
+
"epoch": 5.8842239185750635,
|
1349 |
+
"grad_norm": 1.611412246032975,
|
1350 |
+
"learning_rate": 8.662822803345762e-06,
|
1351 |
+
"loss": 0.1082,
|
1352 |
+
"step": 9250
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 5.916030534351145,
|
1356 |
+
"grad_norm": 1.523038058167952,
|
1357 |
+
"learning_rate": 8.552878518257335e-06,
|
1358 |
+
"loss": 0.1098,
|
1359 |
+
"step": 9300
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 5.947837150127226,
|
1363 |
+
"grad_norm": 1.652523299337976,
|
1364 |
+
"learning_rate": 8.44311261482065e-06,
|
1365 |
+
"loss": 0.1093,
|
1366 |
+
"step": 9350
|
1367 |
+
},
|
1368 |
+
{
|
1369 |
+
"epoch": 5.979643765903308,
|
1370 |
+
"grad_norm": 1.6687963754361035,
|
1371 |
+
"learning_rate": 8.333538623498357e-06,
|
1372 |
+
"loss": 0.1083,
|
1373 |
+
"step": 9400
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 6.0,
|
1377 |
+
"eval_loss": 2.39013671875,
|
1378 |
+
"eval_runtime": 57.4954,
|
1379 |
+
"eval_samples_per_second": 48.804,
|
1380 |
+
"eval_steps_per_second": 1.531,
|
1381 |
+
"step": 9432
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 6.011450381679389,
|
1385 |
+
"grad_norm": 1.1640024621937262,
|
1386 |
+
"learning_rate": 8.224170051096769e-06,
|
1387 |
+
"loss": 0.0926,
|
1388 |
+
"step": 9450
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 6.043256997455471,
|
1392 |
+
"grad_norm": 1.0821873479243533,
|
1393 |
+
"learning_rate": 8.115020379100913e-06,
|
1394 |
+
"loss": 0.0686,
|
1395 |
+
"step": 9500
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 6.075063613231552,
|
1399 |
+
"grad_norm": 1.0429744336325093,
|
1400 |
+
"learning_rate": 8.006103062012725e-06,
|
1401 |
+
"loss": 0.0709,
|
1402 |
+
"step": 9550
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 6.106870229007634,
|
1406 |
+
"grad_norm": 1.0982634834958693,
|
1407 |
+
"learning_rate": 7.897431525692557e-06,
|
1408 |
+
"loss": 0.0699,
|
1409 |
+
"step": 9600
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 6.138676844783715,
|
1413 |
+
"grad_norm": 1.1260866233749833,
|
1414 |
+
"learning_rate": 7.789019165704218e-06,
|
1415 |
+
"loss": 0.0721,
|
1416 |
+
"step": 9650
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 6.1704834605597965,
|
1420 |
+
"grad_norm": 1.2094196230310894,
|
1421 |
+
"learning_rate": 7.680879345663745e-06,
|
1422 |
+
"loss": 0.0717,
|
1423 |
+
"step": 9700
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 6.202290076335878,
|
1427 |
+
"grad_norm": 1.1634423083927459,
|
1428 |
+
"learning_rate": 7.573025395592125e-06,
|
1429 |
+
"loss": 0.0715,
|
1430 |
+
"step": 9750
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 6.234096692111959,
|
1434 |
+
"grad_norm": 1.2985863539363118,
|
1435 |
+
"learning_rate": 7.4654706102721405e-06,
|
1436 |
+
"loss": 0.0728,
|
1437 |
+
"step": 9800
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 6.265903307888041,
|
1441 |
+
"grad_norm": 1.2070636203209166,
|
1442 |
+
"learning_rate": 7.358228247609569e-06,
|
1443 |
+
"loss": 0.0733,
|
1444 |
+
"step": 9850
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 6.297709923664122,
|
1448 |
+
"grad_norm": 1.160714182767047,
|
1449 |
+
"learning_rate": 7.251311526998934e-06,
|
1450 |
+
"loss": 0.0721,
|
1451 |
+
"step": 9900
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 6.3295165394402035,
|
1455 |
+
"grad_norm": 1.2885727319815767,
|
1456 |
+
"learning_rate": 7.1447336276939915e-06,
|
1457 |
+
"loss": 0.073,
|
1458 |
+
"step": 9950
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 6.361323155216285,
|
1462 |
+
"grad_norm": 1.1465122232062648,
|
1463 |
+
"learning_rate": 7.038507687183167e-06,
|
1464 |
+
"loss": 0.0718,
|
1465 |
+
"step": 10000
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 6.393129770992366,
|
1469 |
+
"grad_norm": 1.2099805716340462,
|
1470 |
+
"learning_rate": 6.932646799570144e-06,
|
1471 |
+
"loss": 0.0744,
|
1472 |
+
"step": 10050
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 6.424936386768448,
|
1476 |
+
"grad_norm": 1.1587707031129502,
|
1477 |
+
"learning_rate": 6.827164013959805e-06,
|
1478 |
+
"loss": 0.0725,
|
1479 |
+
"step": 10100
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 6.456743002544529,
|
1483 |
+
"grad_norm": 1.182892310121918,
|
1484 |
+
"learning_rate": 6.722072332849697e-06,
|
1485 |
+
"loss": 0.0735,
|
1486 |
+
"step": 10150
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 6.488549618320611,
|
1490 |
+
"grad_norm": 1.2622584554849223,
|
1491 |
+
"learning_rate": 6.617384710527282e-06,
|
1492 |
+
"loss": 0.0733,
|
1493 |
+
"step": 10200
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 6.520356234096692,
|
1497 |
+
"grad_norm": 1.3226325470322322,
|
1498 |
+
"learning_rate": 6.513114051473094e-06,
|
1499 |
+
"loss": 0.0742,
|
1500 |
+
"step": 10250
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 6.552162849872774,
|
1504 |
+
"grad_norm": 1.3036627900457751,
|
1505 |
+
"learning_rate": 6.409273208770039e-06,
|
1506 |
+
"loss": 0.0733,
|
1507 |
+
"step": 10300
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 6.583969465648855,
|
1511 |
+
"grad_norm": 1.2326022863178456,
|
1512 |
+
"learning_rate": 6.305874982519064e-06,
|
1513 |
+
"loss": 0.0748,
|
1514 |
+
"step": 10350
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 6.6157760814249365,
|
1518 |
+
"grad_norm": 1.1888251941386172,
|
1519 |
+
"learning_rate": 6.202932118261309e-06,
|
1520 |
+
"loss": 0.0735,
|
1521 |
+
"step": 10400
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 6.647582697201018,
|
1525 |
+
"grad_norm": 1.2979512300254676,
|
1526 |
+
"learning_rate": 6.100457305407024e-06,
|
1527 |
+
"loss": 0.0742,
|
1528 |
+
"step": 10450
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 6.679389312977099,
|
1532 |
+
"grad_norm": 1.2201598913375877,
|
1533 |
+
"learning_rate": 5.998463175671382e-06,
|
1534 |
+
"loss": 0.0731,
|
1535 |
+
"step": 10500
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 6.711195928753181,
|
1539 |
+
"grad_norm": 1.074538323760813,
|
1540 |
+
"learning_rate": 5.896962301517415e-06,
|
1541 |
+
"loss": 0.072,
|
1542 |
+
"step": 10550
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 6.743002544529262,
|
1546 |
+
"grad_norm": 1.154410840799108,
|
1547 |
+
"learning_rate": 5.795967194606249e-06,
|
1548 |
+
"loss": 0.0733,
|
1549 |
+
"step": 10600
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 6.7748091603053435,
|
1553 |
+
"grad_norm": 1.1746045784185184,
|
1554 |
+
"learning_rate": 5.695490304254825e-06,
|
1555 |
+
"loss": 0.0722,
|
1556 |
+
"step": 10650
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 6.806615776081425,
|
1560 |
+
"grad_norm": 1.1366587055886472,
|
1561 |
+
"learning_rate": 5.59554401590134e-06,
|
1562 |
+
"loss": 0.072,
|
1563 |
+
"step": 10700
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 6.838422391857506,
|
1567 |
+
"grad_norm": 1.1414915705802602,
|
1568 |
+
"learning_rate": 5.496140649578507e-06,
|
1569 |
+
"loss": 0.073,
|
1570 |
+
"step": 10750
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 6.870229007633588,
|
1574 |
+
"grad_norm": 1.0658028472882173,
|
1575 |
+
"learning_rate": 5.397292458394923e-06,
|
1576 |
+
"loss": 0.0711,
|
1577 |
+
"step": 10800
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 6.902035623409669,
|
1581 |
+
"grad_norm": 1.13284721647744,
|
1582 |
+
"learning_rate": 5.2990116270246795e-06,
|
1583 |
+
"loss": 0.0713,
|
1584 |
+
"step": 10850
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 6.933842239185751,
|
1588 |
+
"grad_norm": 1.1850532152524302,
|
1589 |
+
"learning_rate": 5.201310270205375e-06,
|
1590 |
+
"loss": 0.0714,
|
1591 |
+
"step": 10900
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 6.965648854961832,
|
1595 |
+
"grad_norm": 1.4139501578857867,
|
1596 |
+
"learning_rate": 5.104200431244802e-06,
|
1597 |
+
"loss": 0.0716,
|
1598 |
+
"step": 10950
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 6.997455470737913,
|
1602 |
+
"grad_norm": 1.3206202357844146,
|
1603 |
+
"learning_rate": 5.007694080536379e-06,
|
1604 |
+
"loss": 0.0721,
|
1605 |
+
"step": 11000
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 7.0,
|
1609 |
+
"eval_loss": 2.679978132247925,
|
1610 |
+
"eval_runtime": 55.9717,
|
1611 |
+
"eval_samples_per_second": 50.132,
|
1612 |
+
"eval_steps_per_second": 1.572,
|
1613 |
+
"step": 11004
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 7.029262086513995,
|
1617 |
+
"grad_norm": 0.7594215283173359,
|
1618 |
+
"learning_rate": 4.911803114083635e-06,
|
1619 |
+
"loss": 0.0532,
|
1620 |
+
"step": 11050
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 7.061068702290076,
|
1624 |
+
"grad_norm": 0.7570171860957418,
|
1625 |
+
"learning_rate": 4.816539352033806e-06,
|
1626 |
+
"loss": 0.0509,
|
1627 |
+
"step": 11100
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 7.092875318066158,
|
1631 |
+
"grad_norm": 0.7549673159769185,
|
1632 |
+
"learning_rate": 4.721914537220807e-06,
|
1633 |
+
"loss": 0.0522,
|
1634 |
+
"step": 11150
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 7.124681933842239,
|
1638 |
+
"grad_norm": 0.8233969961008896,
|
1639 |
+
"learning_rate": 4.627940333717758e-06,
|
1640 |
+
"loss": 0.0527,
|
1641 |
+
"step": 11200
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 7.156488549618321,
|
1645 |
+
"grad_norm": 0.8166861593202606,
|
1646 |
+
"learning_rate": 4.534628325399157e-06,
|
1647 |
+
"loss": 0.052,
|
1648 |
+
"step": 11250
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 7.188295165394402,
|
1652 |
+
"grad_norm": 0.9851243027512826,
|
1653 |
+
"learning_rate": 4.441990014513016e-06,
|
1654 |
+
"loss": 0.0524,
|
1655 |
+
"step": 11300
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 7.2201017811704835,
|
1659 |
+
"grad_norm": 0.8447465274214352,
|
1660 |
+
"learning_rate": 4.3500368202629775e-06,
|
1661 |
+
"loss": 0.0522,
|
1662 |
+
"step": 11350
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 7.251908396946565,
|
1666 |
+
"grad_norm": 0.750732927712184,
|
1667 |
+
"learning_rate": 4.2587800774007485e-06,
|
1668 |
+
"loss": 0.0528,
|
1669 |
+
"step": 11400
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 7.283715012722646,
|
1673 |
+
"grad_norm": 0.7801419309981809,
|
1674 |
+
"learning_rate": 4.168231034828873e-06,
|
1675 |
+
"loss": 0.0528,
|
1676 |
+
"step": 11450
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 7.315521628498728,
|
1680 |
+
"grad_norm": 0.6873017424208359,
|
1681 |
+
"learning_rate": 4.078400854214136e-06,
|
1682 |
+
"loss": 0.052,
|
1683 |
+
"step": 11500
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 7.347328244274809,
|
1687 |
+
"grad_norm": 0.8809132112218713,
|
1688 |
+
"learning_rate": 3.989300608611709e-06,
|
1689 |
+
"loss": 0.0538,
|
1690 |
+
"step": 11550
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 7.379134860050891,
|
1694 |
+
"grad_norm": 0.8614536390106059,
|
1695 |
+
"learning_rate": 3.90094128110018e-06,
|
1696 |
+
"loss": 0.0532,
|
1697 |
+
"step": 11600
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 7.410941475826972,
|
1701 |
+
"grad_norm": 0.7727143215643426,
|
1702 |
+
"learning_rate": 3.8133337634277556e-06,
|
1703 |
+
"loss": 0.0534,
|
1704 |
+
"step": 11650
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 7.442748091603053,
|
1708 |
+
"grad_norm": 0.8389043129325592,
|
1709 |
+
"learning_rate": 3.726488854669631e-06,
|
1710 |
+
"loss": 0.0535,
|
1711 |
+
"step": 11700
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 7.474554707379135,
|
1715 |
+
"grad_norm": 0.7673983015748496,
|
1716 |
+
"learning_rate": 3.640417259896856e-06,
|
1717 |
+
"loss": 0.0525,
|
1718 |
+
"step": 11750
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 7.506361323155216,
|
1722 |
+
"grad_norm": 0.8586943513972485,
|
1723 |
+
"learning_rate": 3.5551295888567304e-06,
|
1724 |
+
"loss": 0.0527,
|
1725 |
+
"step": 11800
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 7.538167938931298,
|
1729 |
+
"grad_norm": 0.8250658330704663,
|
1730 |
+
"learning_rate": 3.470636354665006e-06,
|
1731 |
+
"loss": 0.0528,
|
1732 |
+
"step": 11850
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 7.569974554707379,
|
1736 |
+
"grad_norm": 0.9181462088501849,
|
1737 |
+
"learning_rate": 3.386947972509944e-06,
|
1738 |
+
"loss": 0.0531,
|
1739 |
+
"step": 11900
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 7.601781170483461,
|
1743 |
+
"grad_norm": 0.7612511386277396,
|
1744 |
+
"learning_rate": 3.3040747583684864e-06,
|
1745 |
+
"loss": 0.0534,
|
1746 |
+
"step": 11950
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 7.633587786259542,
|
1750 |
+
"grad_norm": 0.8374071182256133,
|
1751 |
+
"learning_rate": 3.2220269277346437e-06,
|
1752 |
+
"loss": 0.0525,
|
1753 |
+
"step": 12000
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 7.6653944020356235,
|
1757 |
+
"grad_norm": 0.6843857705551388,
|
1758 |
+
"learning_rate": 3.140814594360254e-06,
|
1759 |
+
"loss": 0.0532,
|
1760 |
+
"step": 12050
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 7.697201017811705,
|
1764 |
+
"grad_norm": 0.7472725928560873,
|
1765 |
+
"learning_rate": 3.060447769008311e-06,
|
1766 |
+
"loss": 0.053,
|
1767 |
+
"step": 12100
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 7.729007633587786,
|
1771 |
+
"grad_norm": 0.6742611901517995,
|
1772 |
+
"learning_rate": 2.980936358218951e-06,
|
1773 |
+
"loss": 0.0521,
|
1774 |
+
"step": 12150
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 7.760814249363868,
|
1778 |
+
"grad_norm": 0.7447558302371876,
|
1779 |
+
"learning_rate": 2.902290163088334e-06,
|
1780 |
+
"loss": 0.0523,
|
1781 |
+
"step": 12200
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 7.792620865139949,
|
1785 |
+
"grad_norm": 0.8357691068645717,
|
1786 |
+
"learning_rate": 2.824518878060475e-06,
|
1787 |
+
"loss": 0.0522,
|
1788 |
+
"step": 12250
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 7.824427480916031,
|
1792 |
+
"grad_norm": 0.7615949867158718,
|
1793 |
+
"learning_rate": 2.7476320897322507e-06,
|
1794 |
+
"loss": 0.0528,
|
1795 |
+
"step": 12300
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 7.856234096692112,
|
1799 |
+
"grad_norm": 0.6736658957587341,
|
1800 |
+
"learning_rate": 2.6716392756717025e-06,
|
1801 |
+
"loss": 0.0528,
|
1802 |
+
"step": 12350
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 7.888040712468193,
|
1806 |
+
"grad_norm": 0.8585452571929305,
|
1807 |
+
"learning_rate": 2.596549803249748e-06,
|
1808 |
+
"loss": 0.0523,
|
1809 |
+
"step": 12400
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 7.919847328244275,
|
1813 |
+
"grad_norm": 0.7813934967634093,
|
1814 |
+
"learning_rate": 2.522372928485526e-06,
|
1815 |
+
"loss": 0.052,
|
1816 |
+
"step": 12450
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 7.951653944020356,
|
1820 |
+
"grad_norm": 0.6924594723451242,
|
1821 |
+
"learning_rate": 2.4491177949054066e-06,
|
1822 |
+
"loss": 0.0526,
|
1823 |
+
"step": 12500
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 7.983460559796438,
|
1827 |
+
"grad_norm": 0.797811753846389,
|
1828 |
+
"learning_rate": 2.376793432415935e-06,
|
1829 |
+
"loss": 0.0521,
|
1830 |
+
"step": 12550
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"epoch": 8.0,
|
1834 |
+
"eval_loss": 2.9158363342285156,
|
1835 |
+
"eval_runtime": 54.0838,
|
1836 |
+
"eval_samples_per_second": 51.882,
|
1837 |
+
"eval_steps_per_second": 1.627,
|
1838 |
+
"step": 12576
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 8.01526717557252,
|
1842 |
+
"grad_norm": 0.47699575150025136,
|
1843 |
+
"learning_rate": 2.3054087561907133e-06,
|
1844 |
+
"loss": 0.0476,
|
1845 |
+
"step": 12600
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 8.0470737913486,
|
1849 |
+
"grad_norm": 0.44472989078715447,
|
1850 |
+
"learning_rate": 2.2349725655714784e-06,
|
1851 |
+
"loss": 0.0408,
|
1852 |
+
"step": 12650
|
1853 |
+
},
|
1854 |
+
{
|
1855 |
+
"epoch": 8.078880407124682,
|
1856 |
+
"grad_norm": 0.4166634413980581,
|
1857 |
+
"learning_rate": 2.165493542983439e-06,
|
1858 |
+
"loss": 0.04,
|
1859 |
+
"step": 12700
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 8.110687022900763,
|
1863 |
+
"grad_norm": 0.4826499882370959,
|
1864 |
+
"learning_rate": 2.0969802528650052e-06,
|
1865 |
+
"loss": 0.0406,
|
1866 |
+
"step": 12750
|
1867 |
+
},
|
1868 |
+
{
|
1869 |
+
"epoch": 8.142493638676845,
|
1870 |
+
"grad_norm": 0.5525649043803899,
|
1871 |
+
"learning_rate": 2.0294411406121017e-06,
|
1872 |
+
"loss": 0.0403,
|
1873 |
+
"step": 12800
|
1874 |
+
},
|
1875 |
+
{
|
1876 |
+
"epoch": 8.174300254452927,
|
1877 |
+
"grad_norm": 0.6770167907516378,
|
1878 |
+
"learning_rate": 1.9628845315371135e-06,
|
1879 |
+
"loss": 0.0416,
|
1880 |
+
"step": 12850
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 8.206106870229007,
|
1884 |
+
"grad_norm": 0.5609786348847312,
|
1885 |
+
"learning_rate": 1.8973186298426715e-06,
|
1886 |
+
"loss": 0.04,
|
1887 |
+
"step": 12900
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 8.23791348600509,
|
1891 |
+
"grad_norm": 1.2377244048034484,
|
1892 |
+
"learning_rate": 1.8327515176103339e-06,
|
1893 |
+
"loss": 0.0409,
|
1894 |
+
"step": 12950
|
1895 |
+
},
|
1896 |
+
{
|
1897 |
+
"epoch": 8.26972010178117,
|
1898 |
+
"grad_norm": 0.5811829212233038,
|
1899 |
+
"learning_rate": 1.7691911538043426e-06,
|
1900 |
+
"loss": 0.0414,
|
1901 |
+
"step": 13000
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 8.301526717557252,
|
1905 |
+
"grad_norm": 0.404578030905123,
|
1906 |
+
"learning_rate": 1.7066453732905497e-06,
|
1907 |
+
"loss": 0.0406,
|
1908 |
+
"step": 13050
|
1909 |
+
},
|
1910 |
+
{
|
1911 |
+
"epoch": 8.333333333333334,
|
1912 |
+
"grad_norm": 0.5099055257542866,
|
1913 |
+
"learning_rate": 1.6451218858706374e-06,
|
1914 |
+
"loss": 0.0413,
|
1915 |
+
"step": 13100
|
1916 |
+
},
|
1917 |
+
{
|
1918 |
+
"epoch": 8.365139949109414,
|
1919 |
+
"grad_norm": 0.4999951785478943,
|
1920 |
+
"learning_rate": 1.5846282753317665e-06,
|
1921 |
+
"loss": 0.0403,
|
1922 |
+
"step": 13150
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 8.396946564885496,
|
1926 |
+
"grad_norm": 0.48048243299669846,
|
1927 |
+
"learning_rate": 1.525171998511733e-06,
|
1928 |
+
"loss": 0.0404,
|
1929 |
+
"step": 13200
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 8.428753180661577,
|
1933 |
+
"grad_norm": 0.5268405348490426,
|
1934 |
+
"learning_rate": 1.4667603843798106e-06,
|
1935 |
+
"loss": 0.0412,
|
1936 |
+
"step": 13250
|
1937 |
+
},
|
1938 |
+
{
|
1939 |
+
"epoch": 8.460559796437659,
|
1940 |
+
"grad_norm": 0.48606935124003653,
|
1941 |
+
"learning_rate": 1.40940063313331e-06,
|
1942 |
+
"loss": 0.0407,
|
1943 |
+
"step": 13300
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"epoch": 8.492366412213741,
|
1947 |
+
"grad_norm": 0.4586801501366044,
|
1948 |
+
"learning_rate": 1.3530998153100584e-06,
|
1949 |
+
"loss": 0.041,
|
1950 |
+
"step": 13350
|
1951 |
+
},
|
1952 |
+
{
|
1953 |
+
"epoch": 8.524173027989821,
|
1954 |
+
"grad_norm": 0.46212200000809905,
|
1955 |
+
"learning_rate": 1.2978648709168218e-06,
|
1956 |
+
"loss": 0.0415,
|
1957 |
+
"step": 13400
|
1958 |
+
},
|
1959 |
+
{
|
1960 |
+
"epoch": 8.555979643765903,
|
1961 |
+
"grad_norm": 0.5230101492785741,
|
1962 |
+
"learning_rate": 1.2437026085738413e-06,
|
1963 |
+
"loss": 0.0412,
|
1964 |
+
"step": 13450
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 8.587786259541986,
|
1968 |
+
"grad_norm": 0.5010710891320053,
|
1969 |
+
"learning_rate": 1.190619704675564e-06,
|
1970 |
+
"loss": 0.0407,
|
1971 |
+
"step": 13500
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 8.619592875318066,
|
1975 |
+
"grad_norm": 0.5337226775595767,
|
1976 |
+
"learning_rate": 1.1386227025676533e-06,
|
1977 |
+
"loss": 0.0411,
|
1978 |
+
"step": 13550
|
1979 |
+
},
|
1980 |
+
{
|
1981 |
+
"epoch": 8.651399491094148,
|
1982 |
+
"grad_norm": 0.49748450214540363,
|
1983 |
+
"learning_rate": 1.0877180117404262e-06,
|
1984 |
+
"loss": 0.041,
|
1985 |
+
"step": 13600
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"epoch": 8.683206106870228,
|
1989 |
+
"grad_norm": 0.5478966127927775,
|
1990 |
+
"learning_rate": 1.0379119070387678e-06,
|
1991 |
+
"loss": 0.0408,
|
1992 |
+
"step": 13650
|
1993 |
+
},
|
1994 |
+
{
|
1995 |
+
"epoch": 8.71501272264631,
|
1996 |
+
"grad_norm": 0.5724410891992745,
|
1997 |
+
"learning_rate": 9.892105278886633e-07,
|
1998 |
+
"loss": 0.0413,
|
1999 |
+
"step": 13700
|
2000 |
+
},
|
2001 |
+
{
|
2002 |
+
"epoch": 8.746819338422393,
|
2003 |
+
"grad_norm": 0.5129565444894096,
|
2004 |
+
"learning_rate": 9.416198775403995e-07,
|
2005 |
+
"loss": 0.0416,
|
2006 |
+
"step": 13750
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 8.778625954198473,
|
2010 |
+
"grad_norm": 0.4919521234854214,
|
2011 |
+
"learning_rate": 8.951458223285747e-07,
|
2012 |
+
"loss": 0.041,
|
2013 |
+
"step": 13800
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 8.810432569974555,
|
2017 |
+
"grad_norm": 0.5202619264425508,
|
2018 |
+
"learning_rate": 8.497940909489766e-07,
|
2019 |
+
"loss": 0.0409,
|
2020 |
+
"step": 13850
|
2021 |
+
},
|
2022 |
+
{
|
2023 |
+
"epoch": 8.842239185750635,
|
2024 |
+
"grad_norm": 0.5737719301526714,
|
2025 |
+
"learning_rate": 8.05570273752414e-07,
|
2026 |
+
"loss": 0.0409,
|
2027 |
+
"step": 13900
|
2028 |
+
},
|
2029 |
+
{
|
2030 |
+
"epoch": 8.874045801526718,
|
2031 |
+
"grad_norm": 0.5125697208888668,
|
2032 |
+
"learning_rate": 7.624798220556307e-07,
|
2033 |
+
"loss": 0.0416,
|
2034 |
+
"step": 13950
|
2035 |
+
},
|
2036 |
+
{
|
2037 |
+
"epoch": 8.9058524173028,
|
2038 |
+
"grad_norm": 0.4752912481647863,
|
2039 |
+
"learning_rate": 7.205280474693255e-07,
|
2040 |
+
"loss": 0.0408,
|
2041 |
+
"step": 14000
|
2042 |
+
},
|
2043 |
+
{
|
2044 |
+
"epoch": 8.93765903307888,
|
2045 |
+
"grad_norm": 0.46889034532949214,
|
2046 |
+
"learning_rate": 6.797201212434179e-07,
|
2047 |
+
"loss": 0.0414,
|
2048 |
+
"step": 14050
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 8.969465648854962,
|
2052 |
+
"grad_norm": 0.5191849271721021,
|
2053 |
+
"learning_rate": 6.40061073629602e-07,
|
2054 |
+
"loss": 0.0407,
|
2055 |
+
"step": 14100
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 9.0,
|
2059 |
+
"eval_loss": 3.1603267192840576,
|
2060 |
+
"eval_runtime": 41.6298,
|
2061 |
+
"eval_samples_per_second": 67.404,
|
2062 |
+
"eval_steps_per_second": 2.114,
|
2063 |
+
"step": 14148
|
2064 |
+
}
|
2065 |
+
],
|
2066 |
+
"logging_steps": 50,
|
2067 |
+
"max_steps": 15720,
|
2068 |
+
"num_input_tokens_seen": 0,
|
2069 |
+
"num_train_epochs": 10,
|
2070 |
+
"save_steps": 500,
|
2071 |
+
"stateful_callbacks": {
|
2072 |
+
"TrainerControl": {
|
2073 |
+
"args": {
|
2074 |
+
"should_epoch_stop": false,
|
2075 |
+
"should_evaluate": false,
|
2076 |
+
"should_log": false,
|
2077 |
+
"should_save": true,
|
2078 |
+
"should_training_stop": false
|
2079 |
+
},
|
2080 |
+
"attributes": {}
|
2081 |
+
}
|
2082 |
+
},
|
2083 |
+
"total_flos": 1023988520189952.0,
|
2084 |
+
"train_batch_size": 4,
|
2085 |
+
"trial_name": null,
|
2086 |
+
"trial_params": null
|
2087 |
+
}
|
checkpoint-14148/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffe16de25abde3d2a7777095ce6881549bdaf81bd8ab5b319d9af5888345c635
|
3 |
+
size 7224
|
checkpoint-14148/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|