obiwit commited on
Commit
842f1bf
·
verified ·
1 Parent(s): d418934

Training in progress, epoch 9, checkpoint

Browse files
Files changed (39) hide show
  1. checkpoint-14148/added_tokens.json +3 -0
  2. checkpoint-14148/config.json +37 -0
  3. checkpoint-14148/generation_config.json +13 -0
  4. checkpoint-14148/global_step14148/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-14148/global_step14148/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-14148/global_step14148/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-14148/global_step14148/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-14148/global_step14148/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-14148/global_step14148/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-14148/global_step14148/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-14148/global_step14148/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-14148/global_step14148/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  13. checkpoint-14148/global_step14148/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-14148/global_step14148/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  15. checkpoint-14148/global_step14148/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-14148/global_step14148/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-14148/global_step14148/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-14148/global_step14148/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-14148/global_step14148/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  20. checkpoint-14148/latest +1 -0
  21. checkpoint-14148/model-00001-of-00002.safetensors +3 -0
  22. checkpoint-14148/model-00002-of-00002.safetensors +3 -0
  23. checkpoint-14148/model.safetensors.index.json +451 -0
  24. checkpoint-14148/rng_state_0.pth +3 -0
  25. checkpoint-14148/rng_state_1.pth +3 -0
  26. checkpoint-14148/rng_state_2.pth +3 -0
  27. checkpoint-14148/rng_state_3.pth +3 -0
  28. checkpoint-14148/rng_state_4.pth +3 -0
  29. checkpoint-14148/rng_state_5.pth +3 -0
  30. checkpoint-14148/rng_state_6.pth +3 -0
  31. checkpoint-14148/rng_state_7.pth +3 -0
  32. checkpoint-14148/scheduler.pt +3 -0
  33. checkpoint-14148/special_tokens_map.json +33 -0
  34. checkpoint-14148/tokenizer.json +3 -0
  35. checkpoint-14148/tokenizer.model +3 -0
  36. checkpoint-14148/tokenizer_config.json +0 -0
  37. checkpoint-14148/trainer_state.json +2087 -0
  38. checkpoint-14148/training_args.bin +3 -0
  39. checkpoint-14148/zero_to_fp32.py +760 -0
checkpoint-14148/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-14148/config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attn_logit_softcapping": null,
8
+ "bos_token_id": 2,
9
+ "cache_implementation": "hybrid",
10
+ "eos_token_id": 1,
11
+ "final_logit_softcapping": null,
12
+ "head_dim": 256,
13
+ "hidden_activation": "gelu_pytorch_tanh",
14
+ "hidden_size": 2560,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 10240,
17
+ "max_position_embeddings": 131072,
18
+ "model_type": "gemma3_text",
19
+ "num_attention_heads": 8,
20
+ "num_hidden_layers": 34,
21
+ "num_key_value_heads": 4,
22
+ "pad_token_id": 0,
23
+ "query_pre_attn_scalar": 256,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_local_base_freq": 10000.0,
26
+ "rope_scaling": {
27
+ "factor": 8.0,
28
+ "rope_type": "linear"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 1024,
32
+ "sliding_window_pattern": 6,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.51.0.dev0",
35
+ "use_cache": true,
36
+ "vocab_size": 262208
37
+ }
checkpoint-14148/generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 2,
3
+ "cache_implementation": "hybrid",
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 1,
7
+ 106
8
+ ],
9
+ "pad_token_id": 0,
10
+ "top_k": 64,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.51.0.dev0"
13
+ }
checkpoint-14148/global_step14148/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2372b29df2a252bb27e3545b04e9490998a8bc27d738b2b7f92fa5a4bcb0b8c
3
+ size 5820399644
checkpoint-14148/global_step14148/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:347a9a38c43f12c85e6f52b42483ea0af4aaa45d9ba93e5a5b43b078a171250a
3
+ size 5820399644
checkpoint-14148/global_step14148/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71e2726816800764be732f231917cb01ee0512df6264eaa16482f573e8a6956b
3
+ size 5820399644
checkpoint-14148/global_step14148/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c276d220e94c5bad83557010664753c22089751e0bb277694c0d51329ab5d6b3
3
+ size 5820399644
checkpoint-14148/global_step14148/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3edd6ae4b26a43712ab3732a4dc74b32fa197cc6d7a931ade37d8a44f087db85
3
+ size 5820399644
checkpoint-14148/global_step14148/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05a326e3147e10b2daf1c789de6ba7b96126f43433a32b3789b3b27c37a70554
3
+ size 5820399644
checkpoint-14148/global_step14148/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8767199519a1d346a774e58d9c61bde226422156b787ef2e17388099f18edd10
3
+ size 5820399644
checkpoint-14148/global_step14148/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87a19b09a37ed9609a3c5b0c24f8931ba8d023ff92b5381661a2d425b93d2cff
3
+ size 5820399644
checkpoint-14148/global_step14148/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92ea8ef479ce0871164ebf1dbf66be39293c3f3d2964a8718d2bbb6dc91287fd
3
+ size 225786
checkpoint-14148/global_step14148/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0556112d976e69d5ffd99a6d0950da8a62f025015b43e8b345cff2644839431d
3
+ size 225722
checkpoint-14148/global_step14148/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d859ec8484a44ddac0fa5ad837f8f5f98ae140db6a4b00932d51b78f6245ea9
3
+ size 225722
checkpoint-14148/global_step14148/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a58be778f10683a329467d391c8fe2db9933931636feb71550d08aadac562cca
3
+ size 225722
checkpoint-14148/global_step14148/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5df90f0ac68240570d3c55ff65daaadee8ec27a8232ca295874c32dca25ca595
3
+ size 225722
checkpoint-14148/global_step14148/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c16b5e9ef3217b83ab9e8553c500269330694a84d5b656b07387c5f2b4bda380
3
+ size 225722
checkpoint-14148/global_step14148/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a409e49032ea8898bf3ec175d984302d5ca0e8e3c57024d2a490a90e0a22fa0
3
+ size 225722
checkpoint-14148/global_step14148/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dd12fead55d2e36cf88b523a59a04eeff46dfc6dc368c120ccca6b9482a0659
3
+ size 225722
checkpoint-14148/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step14148
checkpoint-14148/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1235d7759942e94c23a7c65426e2ebde7e4804d9b7b01e5d32e9a6209f305e3b
3
+ size 4960531344
checkpoint-14148/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cdbc4dc009e66972a2801ed75c8bf1d264c6567f07c69c030ecfc92a56122cb
3
+ size 2800046672
checkpoint-14148/model.safetensors.index.json ADDED
@@ -0,0 +1,451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7760526336
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.15.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.16.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.16.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.17.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.17.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.18.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.18.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
217
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
220
+ "model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
222
+ "model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
244
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
246
+ "model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.26.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.26.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
266
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
268
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
270
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
271
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.27.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.27.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
285
+ "model.layers.28.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
286
+ "model.layers.28.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
287
+ "model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
288
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
289
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
290
+ "model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
291
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
292
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
293
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
294
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
295
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.29.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.29.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
307
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
308
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
309
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
310
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
311
+ "model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
313
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
314
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
315
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
316
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
317
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
318
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
319
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.30.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.30.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.31.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.31.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
350
+ "model.layers.32.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.32.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
362
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.33.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.33.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
369
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
370
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
371
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
441
+ "model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
442
+ "model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
443
+ "model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
444
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
445
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
446
+ "model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
447
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
448
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
449
+ "model.norm.weight": "model-00002-of-00002.safetensors"
450
+ }
451
+ }
checkpoint-14148/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f5c4738c31c5c9a38e1f586256d59a0e8e7d02641b9b9af2afdbe078440aeb4
3
+ size 15984
checkpoint-14148/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d374b3390eb52ec7f6161c06272d4f26cb715692bdf2ad5374287b6de420ca3
3
+ size 15984
checkpoint-14148/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24111edc5a6a2994166cd410155ee3c630816d0fe21c13808ebd2a2ae45bc9d8
3
+ size 15984
checkpoint-14148/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:157b21eda1c7f898e519251deed08049767ffba123797289de56343a92ba7380
3
+ size 15984
checkpoint-14148/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ccb615552e5845759bc13aa2ae50c0525fbf941fa76ee2e2c20cb9838fe1995
3
+ size 15984
checkpoint-14148/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fcf720fc22147ce563d6f2c2f6f3d916a7e8b7af174b480d072b5c822e992aa
3
+ size 15984
checkpoint-14148/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d055d3b033dc8e6fc2a19aa95162960544ab94a903988874315efe4ed5aa8e13
3
+ size 15984
checkpoint-14148/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e03c685f2e019350bfdd41f006495a18690aacbccd7ffc1f40de827f433eb87
3
+ size 15984
checkpoint-14148/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:753a216a5f9ad0a1690e2477dea338f23dbfdc824e7dd3f857de8f8be85c1f41
3
+ size 1064
checkpoint-14148/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-14148/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
checkpoint-14148/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
checkpoint-14148/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-14148/trainer_state.json ADDED
@@ -0,0 +1,2087 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 3144,
3
+ "best_metric": 1.1658307313919067,
4
+ "best_model_checkpoint": "models/gemma-3-4b-sft-full/checkpoint-3144",
5
+ "epoch": 9.0,
6
+ "eval_steps": 500,
7
+ "global_step": 14148,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0006361323155216285,
14
+ "grad_norm": 31.319606519809206,
15
+ "learning_rate": 1.2722646310432571e-08,
16
+ "loss": 2.0248,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.031806615776081425,
21
+ "grad_norm": 13.2120799093862,
22
+ "learning_rate": 6.361323155216286e-07,
23
+ "loss": 1.9103,
24
+ "step": 50
25
+ },
26
+ {
27
+ "epoch": 0.06361323155216285,
28
+ "grad_norm": 2.8305292907887694,
29
+ "learning_rate": 1.2722646310432571e-06,
30
+ "loss": 1.4434,
31
+ "step": 100
32
+ },
33
+ {
34
+ "epoch": 0.09541984732824428,
35
+ "grad_norm": 2.3110831279704738,
36
+ "learning_rate": 1.908396946564886e-06,
37
+ "loss": 1.3196,
38
+ "step": 150
39
+ },
40
+ {
41
+ "epoch": 0.1272264631043257,
42
+ "grad_norm": 2.3096762225567056,
43
+ "learning_rate": 2.5445292620865143e-06,
44
+ "loss": 1.3039,
45
+ "step": 200
46
+ },
47
+ {
48
+ "epoch": 0.15903307888040713,
49
+ "grad_norm": 2.2782572106396306,
50
+ "learning_rate": 3.1806615776081427e-06,
51
+ "loss": 1.2618,
52
+ "step": 250
53
+ },
54
+ {
55
+ "epoch": 0.19083969465648856,
56
+ "grad_norm": 2.2420875359580132,
57
+ "learning_rate": 3.816793893129772e-06,
58
+ "loss": 1.2501,
59
+ "step": 300
60
+ },
61
+ {
62
+ "epoch": 0.22264631043256997,
63
+ "grad_norm": 2.0330974831105215,
64
+ "learning_rate": 4.4529262086514e-06,
65
+ "loss": 1.2541,
66
+ "step": 350
67
+ },
68
+ {
69
+ "epoch": 0.2544529262086514,
70
+ "grad_norm": 2.1026569258639043,
71
+ "learning_rate": 5.0890585241730285e-06,
72
+ "loss": 1.2278,
73
+ "step": 400
74
+ },
75
+ {
76
+ "epoch": 0.2862595419847328,
77
+ "grad_norm": 2.0803892623652196,
78
+ "learning_rate": 5.725190839694656e-06,
79
+ "loss": 1.2173,
80
+ "step": 450
81
+ },
82
+ {
83
+ "epoch": 0.31806615776081426,
84
+ "grad_norm": 2.5887368846264684,
85
+ "learning_rate": 6.3613231552162854e-06,
86
+ "loss": 1.2241,
87
+ "step": 500
88
+ },
89
+ {
90
+ "epoch": 0.34987277353689566,
91
+ "grad_norm": 1.8616362535769346,
92
+ "learning_rate": 6.997455470737914e-06,
93
+ "loss": 1.1954,
94
+ "step": 550
95
+ },
96
+ {
97
+ "epoch": 0.3816793893129771,
98
+ "grad_norm": 2.2198054581544153,
99
+ "learning_rate": 7.633587786259543e-06,
100
+ "loss": 1.2207,
101
+ "step": 600
102
+ },
103
+ {
104
+ "epoch": 0.41348600508905853,
105
+ "grad_norm": 1.9458297082843083,
106
+ "learning_rate": 8.26972010178117e-06,
107
+ "loss": 1.2104,
108
+ "step": 650
109
+ },
110
+ {
111
+ "epoch": 0.44529262086513993,
112
+ "grad_norm": 1.754441697698081,
113
+ "learning_rate": 8.9058524173028e-06,
114
+ "loss": 1.1954,
115
+ "step": 700
116
+ },
117
+ {
118
+ "epoch": 0.4770992366412214,
119
+ "grad_norm": 1.9516730885650273,
120
+ "learning_rate": 9.54198473282443e-06,
121
+ "loss": 1.1962,
122
+ "step": 750
123
+ },
124
+ {
125
+ "epoch": 0.5089058524173028,
126
+ "grad_norm": 1.8788578410476755,
127
+ "learning_rate": 1.0178117048346057e-05,
128
+ "loss": 1.1955,
129
+ "step": 800
130
+ },
131
+ {
132
+ "epoch": 0.5407124681933843,
133
+ "grad_norm": 1.7660250423975214,
134
+ "learning_rate": 1.0814249363867686e-05,
135
+ "loss": 1.2029,
136
+ "step": 850
137
+ },
138
+ {
139
+ "epoch": 0.5725190839694656,
140
+ "grad_norm": 1.7319081555721738,
141
+ "learning_rate": 1.1450381679389312e-05,
142
+ "loss": 1.201,
143
+ "step": 900
144
+ },
145
+ {
146
+ "epoch": 0.6043256997455471,
147
+ "grad_norm": 1.7433405435098388,
148
+ "learning_rate": 1.2086513994910942e-05,
149
+ "loss": 1.1945,
150
+ "step": 950
151
+ },
152
+ {
153
+ "epoch": 0.6361323155216285,
154
+ "grad_norm": 1.6584922549922605,
155
+ "learning_rate": 1.2722646310432571e-05,
156
+ "loss": 1.188,
157
+ "step": 1000
158
+ },
159
+ {
160
+ "epoch": 0.6679389312977099,
161
+ "grad_norm": 1.694934894298546,
162
+ "learning_rate": 1.3358778625954198e-05,
163
+ "loss": 1.1853,
164
+ "step": 1050
165
+ },
166
+ {
167
+ "epoch": 0.6997455470737913,
168
+ "grad_norm": 1.8972752727827624,
169
+ "learning_rate": 1.3994910941475828e-05,
170
+ "loss": 1.1796,
171
+ "step": 1100
172
+ },
173
+ {
174
+ "epoch": 0.7315521628498728,
175
+ "grad_norm": 1.7794214888108801,
176
+ "learning_rate": 1.4631043256997457e-05,
177
+ "loss": 1.1879,
178
+ "step": 1150
179
+ },
180
+ {
181
+ "epoch": 0.7633587786259542,
182
+ "grad_norm": 1.7080167758006621,
183
+ "learning_rate": 1.5267175572519086e-05,
184
+ "loss": 1.2033,
185
+ "step": 1200
186
+ },
187
+ {
188
+ "epoch": 0.7951653944020356,
189
+ "grad_norm": 1.6732561680746716,
190
+ "learning_rate": 1.5903307888040712e-05,
191
+ "loss": 1.1729,
192
+ "step": 1250
193
+ },
194
+ {
195
+ "epoch": 0.8269720101781171,
196
+ "grad_norm": 2.0115920286242472,
197
+ "learning_rate": 1.653944020356234e-05,
198
+ "loss": 1.1798,
199
+ "step": 1300
200
+ },
201
+ {
202
+ "epoch": 0.8587786259541985,
203
+ "grad_norm": 1.5883913583214553,
204
+ "learning_rate": 1.717557251908397e-05,
205
+ "loss": 1.1761,
206
+ "step": 1350
207
+ },
208
+ {
209
+ "epoch": 0.8905852417302799,
210
+ "grad_norm": 1.5615231326127277,
211
+ "learning_rate": 1.78117048346056e-05,
212
+ "loss": 1.1807,
213
+ "step": 1400
214
+ },
215
+ {
216
+ "epoch": 0.9223918575063613,
217
+ "grad_norm": 1.6052692336601109,
218
+ "learning_rate": 1.844783715012723e-05,
219
+ "loss": 1.1872,
220
+ "step": 1450
221
+ },
222
+ {
223
+ "epoch": 0.9541984732824428,
224
+ "grad_norm": 1.6293394603925617,
225
+ "learning_rate": 1.908396946564886e-05,
226
+ "loss": 1.1821,
227
+ "step": 1500
228
+ },
229
+ {
230
+ "epoch": 0.9860050890585241,
231
+ "grad_norm": 1.9511097309507746,
232
+ "learning_rate": 1.9720101781170485e-05,
233
+ "loss": 1.193,
234
+ "step": 1550
235
+ },
236
+ {
237
+ "epoch": 1.0,
238
+ "eval_loss": 1.1915197372436523,
239
+ "eval_runtime": 50.604,
240
+ "eval_samples_per_second": 55.45,
241
+ "eval_steps_per_second": 1.739,
242
+ "step": 1572
243
+ },
244
+ {
245
+ "epoch": 1.0178117048346056,
246
+ "grad_norm": 1.699246916566911,
247
+ "learning_rate": 1.9999806716709255e-05,
248
+ "loss": 1.0668,
249
+ "step": 1600
250
+ },
251
+ {
252
+ "epoch": 1.049618320610687,
253
+ "grad_norm": 1.6215378174021484,
254
+ "learning_rate": 1.999850011488216e-05,
255
+ "loss": 0.9829,
256
+ "step": 1650
257
+ },
258
+ {
259
+ "epoch": 1.0814249363867685,
260
+ "grad_norm": 1.7868804206457551,
261
+ "learning_rate": 1.9995961032584046e-05,
262
+ "loss": 0.9782,
263
+ "step": 1700
264
+ },
265
+ {
266
+ "epoch": 1.11323155216285,
267
+ "grad_norm": 1.824863693326858,
268
+ "learning_rate": 1.9992189782798795e-05,
269
+ "loss": 0.9649,
270
+ "step": 1750
271
+ },
272
+ {
273
+ "epoch": 1.1450381679389312,
274
+ "grad_norm": 1.9389315988555975,
275
+ "learning_rate": 1.99871868303953e-05,
276
+ "loss": 0.9859,
277
+ "step": 1800
278
+ },
279
+ {
280
+ "epoch": 1.1768447837150127,
281
+ "grad_norm": 1.8613552819265144,
282
+ "learning_rate": 1.9980952792070175e-05,
283
+ "loss": 0.97,
284
+ "step": 1850
285
+ },
286
+ {
287
+ "epoch": 1.2086513994910941,
288
+ "grad_norm": 1.6290767219311002,
289
+ "learning_rate": 1.9973488436271728e-05,
290
+ "loss": 0.9898,
291
+ "step": 1900
292
+ },
293
+ {
294
+ "epoch": 1.2404580152671756,
295
+ "grad_norm": 1.9280005053128177,
296
+ "learning_rate": 1.996479468310524e-05,
297
+ "loss": 0.977,
298
+ "step": 1950
299
+ },
300
+ {
301
+ "epoch": 1.272264631043257,
302
+ "grad_norm": 1.8021715712875992,
303
+ "learning_rate": 1.9954872604219543e-05,
304
+ "loss": 0.9778,
305
+ "step": 2000
306
+ },
307
+ {
308
+ "epoch": 1.3040712468193385,
309
+ "grad_norm": 1.778983300178611,
310
+ "learning_rate": 1.994372342267493e-05,
311
+ "loss": 0.9754,
312
+ "step": 2050
313
+ },
314
+ {
315
+ "epoch": 1.33587786259542,
316
+ "grad_norm": 1.6139758020504216,
317
+ "learning_rate": 1.993134851279238e-05,
318
+ "loss": 0.9768,
319
+ "step": 2100
320
+ },
321
+ {
322
+ "epoch": 1.3676844783715012,
323
+ "grad_norm": 1.6159993769878525,
324
+ "learning_rate": 1.991774939998417e-05,
325
+ "loss": 0.977,
326
+ "step": 2150
327
+ },
328
+ {
329
+ "epoch": 1.3994910941475827,
330
+ "grad_norm": 1.7346584119107982,
331
+ "learning_rate": 1.9902927760565824e-05,
332
+ "loss": 1.0021,
333
+ "step": 2200
334
+ },
335
+ {
336
+ "epoch": 1.4312977099236641,
337
+ "grad_norm": 1.6348257679838059,
338
+ "learning_rate": 1.988688542154948e-05,
339
+ "loss": 0.9911,
340
+ "step": 2250
341
+ },
342
+ {
343
+ "epoch": 1.4631043256997456,
344
+ "grad_norm": 2.005161271222442,
345
+ "learning_rate": 1.98696243604187e-05,
346
+ "loss": 0.98,
347
+ "step": 2300
348
+ },
349
+ {
350
+ "epoch": 1.494910941475827,
351
+ "grad_norm": 1.6947935478149847,
352
+ "learning_rate": 1.9851146704884684e-05,
353
+ "loss": 0.9933,
354
+ "step": 2350
355
+ },
356
+ {
357
+ "epoch": 1.5267175572519083,
358
+ "grad_norm": 1.559288613818951,
359
+ "learning_rate": 1.9831454732624023e-05,
360
+ "loss": 0.9812,
361
+ "step": 2400
362
+ },
363
+ {
364
+ "epoch": 1.55852417302799,
365
+ "grad_norm": 1.6147458399643977,
366
+ "learning_rate": 1.9810550870997914e-05,
367
+ "loss": 0.9829,
368
+ "step": 2450
369
+ },
370
+ {
371
+ "epoch": 1.5903307888040712,
372
+ "grad_norm": 1.7200525728774254,
373
+ "learning_rate": 1.9788437696752965e-05,
374
+ "loss": 0.9827,
375
+ "step": 2500
376
+ },
377
+ {
378
+ "epoch": 1.6221374045801527,
379
+ "grad_norm": 1.5679464105011003,
380
+ "learning_rate": 1.9765117935703556e-05,
381
+ "loss": 0.9918,
382
+ "step": 2550
383
+ },
384
+ {
385
+ "epoch": 1.6539440203562341,
386
+ "grad_norm": 1.5684761038610553,
387
+ "learning_rate": 1.9740594462395844e-05,
388
+ "loss": 1.0035,
389
+ "step": 2600
390
+ },
391
+ {
392
+ "epoch": 1.6857506361323156,
393
+ "grad_norm": 1.6525710526384763,
394
+ "learning_rate": 1.9714870299753425e-05,
395
+ "loss": 0.9757,
396
+ "step": 2650
397
+ },
398
+ {
399
+ "epoch": 1.717557251908397,
400
+ "grad_norm": 1.61635439544328,
401
+ "learning_rate": 1.9687948618704713e-05,
402
+ "loss": 0.9878,
403
+ "step": 2700
404
+ },
405
+ {
406
+ "epoch": 1.7493638676844783,
407
+ "grad_norm": 1.552931766301823,
408
+ "learning_rate": 1.9659832737792065e-05,
409
+ "loss": 0.9926,
410
+ "step": 2750
411
+ },
412
+ {
413
+ "epoch": 1.78117048346056,
414
+ "grad_norm": 1.7462958660917196,
415
+ "learning_rate": 1.963052612276272e-05,
416
+ "loss": 0.9923,
417
+ "step": 2800
418
+ },
419
+ {
420
+ "epoch": 1.8129770992366412,
421
+ "grad_norm": 1.541467107392074,
422
+ "learning_rate": 1.9600032386141578e-05,
423
+ "loss": 0.9883,
424
+ "step": 2850
425
+ },
426
+ {
427
+ "epoch": 1.8447837150127226,
428
+ "grad_norm": 1.60142808575721,
429
+ "learning_rate": 1.9568355286785916e-05,
430
+ "loss": 0.9848,
431
+ "step": 2900
432
+ },
433
+ {
434
+ "epoch": 1.876590330788804,
435
+ "grad_norm": 1.628212808465854,
436
+ "learning_rate": 1.9535498729422034e-05,
437
+ "loss": 0.981,
438
+ "step": 2950
439
+ },
440
+ {
441
+ "epoch": 1.9083969465648853,
442
+ "grad_norm": 1.589079219019998,
443
+ "learning_rate": 1.950146676416393e-05,
444
+ "loss": 0.9938,
445
+ "step": 3000
446
+ },
447
+ {
448
+ "epoch": 1.940203562340967,
449
+ "grad_norm": 1.5927647305457868,
450
+ "learning_rate": 1.9466263586014062e-05,
451
+ "loss": 0.9831,
452
+ "step": 3050
453
+ },
454
+ {
455
+ "epoch": 1.9720101781170483,
456
+ "grad_norm": 1.6181088935396841,
457
+ "learning_rate": 1.9429893534346248e-05,
458
+ "loss": 0.9738,
459
+ "step": 3100
460
+ },
461
+ {
462
+ "epoch": 2.0,
463
+ "eval_loss": 1.1658307313919067,
464
+ "eval_runtime": 57.664,
465
+ "eval_samples_per_second": 48.661,
466
+ "eval_steps_per_second": 1.526,
467
+ "step": 3144
468
+ },
469
+ {
470
+ "epoch": 2.00381679389313,
471
+ "grad_norm": 2.8157430444252833,
472
+ "learning_rate": 1.9392361092370756e-05,
473
+ "loss": 0.9372,
474
+ "step": 3150
475
+ },
476
+ {
477
+ "epoch": 2.035623409669211,
478
+ "grad_norm": 1.8202205896718766,
479
+ "learning_rate": 1.9353670886581683e-05,
480
+ "loss": 0.6118,
481
+ "step": 3200
482
+ },
483
+ {
484
+ "epoch": 2.0674300254452924,
485
+ "grad_norm": 1.8024719083066718,
486
+ "learning_rate": 1.9313827686186664e-05,
487
+ "loss": 0.5956,
488
+ "step": 3250
489
+ },
490
+ {
491
+ "epoch": 2.099236641221374,
492
+ "grad_norm": 1.8065831151097012,
493
+ "learning_rate": 1.927283640251898e-05,
494
+ "loss": 0.615,
495
+ "step": 3300
496
+ },
497
+ {
498
+ "epoch": 2.1310432569974553,
499
+ "grad_norm": 1.93182684100521,
500
+ "learning_rate": 1.923070208843216e-05,
501
+ "loss": 0.6079,
502
+ "step": 3350
503
+ },
504
+ {
505
+ "epoch": 2.162849872773537,
506
+ "grad_norm": 1.8738788734317153,
507
+ "learning_rate": 1.9187429937677136e-05,
508
+ "loss": 0.607,
509
+ "step": 3400
510
+ },
511
+ {
512
+ "epoch": 2.1946564885496183,
513
+ "grad_norm": 1.8040300513160983,
514
+ "learning_rate": 1.9143025284262022e-05,
515
+ "loss": 0.6085,
516
+ "step": 3450
517
+ },
518
+ {
519
+ "epoch": 2.2264631043257,
520
+ "grad_norm": 1.8986773569695647,
521
+ "learning_rate": 1.909749360179461e-05,
522
+ "loss": 0.6145,
523
+ "step": 3500
524
+ },
525
+ {
526
+ "epoch": 2.258269720101781,
527
+ "grad_norm": 1.9163165829127622,
528
+ "learning_rate": 1.9050840502807665e-05,
529
+ "loss": 0.6169,
530
+ "step": 3550
531
+ },
532
+ {
533
+ "epoch": 2.2900763358778624,
534
+ "grad_norm": 2.0342511222836657,
535
+ "learning_rate": 1.9003071738067073e-05,
536
+ "loss": 0.6181,
537
+ "step": 3600
538
+ },
539
+ {
540
+ "epoch": 2.321882951653944,
541
+ "grad_norm": 1.9022311954341746,
542
+ "learning_rate": 1.895419319586298e-05,
543
+ "loss": 0.6322,
544
+ "step": 3650
545
+ },
546
+ {
547
+ "epoch": 2.3536895674300253,
548
+ "grad_norm": 1.947735727576319,
549
+ "learning_rate": 1.890421090128395e-05,
550
+ "loss": 0.6261,
551
+ "step": 3700
552
+ },
553
+ {
554
+ "epoch": 2.385496183206107,
555
+ "grad_norm": 1.8908602175645888,
556
+ "learning_rate": 1.8853131015474278e-05,
557
+ "loss": 0.6241,
558
+ "step": 3750
559
+ },
560
+ {
561
+ "epoch": 2.4173027989821882,
562
+ "grad_norm": 1.8428847331642595,
563
+ "learning_rate": 1.8800959834874534e-05,
564
+ "loss": 0.6247,
565
+ "step": 3800
566
+ },
567
+ {
568
+ "epoch": 2.4491094147582695,
569
+ "grad_norm": 1.9386784496016072,
570
+ "learning_rate": 1.8747703790445412e-05,
571
+ "loss": 0.6369,
572
+ "step": 3850
573
+ },
574
+ {
575
+ "epoch": 2.480916030534351,
576
+ "grad_norm": 1.8110474855626102,
577
+ "learning_rate": 1.8693369446875008e-05,
578
+ "loss": 0.6352,
579
+ "step": 3900
580
+ },
581
+ {
582
+ "epoch": 2.5127226463104324,
583
+ "grad_norm": 1.8744360271519491,
584
+ "learning_rate": 1.8637963501769625e-05,
585
+ "loss": 0.6402,
586
+ "step": 3950
587
+ },
588
+ {
589
+ "epoch": 2.544529262086514,
590
+ "grad_norm": 1.858724398900357,
591
+ "learning_rate": 1.858149278482817e-05,
592
+ "loss": 0.6459,
593
+ "step": 4000
594
+ },
595
+ {
596
+ "epoch": 2.5763358778625953,
597
+ "grad_norm": 1.8627524401678055,
598
+ "learning_rate": 1.8523964257000288e-05,
599
+ "loss": 0.6276,
600
+ "step": 4050
601
+ },
602
+ {
603
+ "epoch": 2.608142493638677,
604
+ "grad_norm": 1.9220180062265788,
605
+ "learning_rate": 1.8465385009628308e-05,
606
+ "loss": 0.6481,
607
+ "step": 4100
608
+ },
609
+ {
610
+ "epoch": 2.6399491094147582,
611
+ "grad_norm": 1.9319620445548449,
612
+ "learning_rate": 1.8405762263573108e-05,
613
+ "loss": 0.6344,
614
+ "step": 4150
615
+ },
616
+ {
617
+ "epoch": 2.67175572519084,
618
+ "grad_norm": 1.8442743167506148,
619
+ "learning_rate": 1.834510336832405e-05,
620
+ "loss": 0.6418,
621
+ "step": 4200
622
+ },
623
+ {
624
+ "epoch": 2.703562340966921,
625
+ "grad_norm": 1.8919128966016239,
626
+ "learning_rate": 1.8283415801093007e-05,
627
+ "loss": 0.6455,
628
+ "step": 4250
629
+ },
630
+ {
631
+ "epoch": 2.7353689567430024,
632
+ "grad_norm": 1.79572731114352,
633
+ "learning_rate": 1.8220707165892682e-05,
634
+ "loss": 0.6474,
635
+ "step": 4300
636
+ },
637
+ {
638
+ "epoch": 2.767175572519084,
639
+ "grad_norm": 1.8916208552532916,
640
+ "learning_rate": 1.815698519259929e-05,
641
+ "loss": 0.6479,
642
+ "step": 4350
643
+ },
644
+ {
645
+ "epoch": 2.7989821882951653,
646
+ "grad_norm": 1.8754600469553322,
647
+ "learning_rate": 1.8092257735999734e-05,
648
+ "loss": 0.6549,
649
+ "step": 4400
650
+ },
651
+ {
652
+ "epoch": 2.830788804071247,
653
+ "grad_norm": 1.8972086051601613,
654
+ "learning_rate": 1.8026532774823343e-05,
655
+ "loss": 0.6397,
656
+ "step": 4450
657
+ },
658
+ {
659
+ "epoch": 2.8625954198473282,
660
+ "grad_norm": 1.8335920924146587,
661
+ "learning_rate": 1.7959818410758395e-05,
662
+ "loss": 0.6379,
663
+ "step": 4500
664
+ },
665
+ {
666
+ "epoch": 2.8944020356234095,
667
+ "grad_norm": 2.010899629666033,
668
+ "learning_rate": 1.789212286745342e-05,
669
+ "loss": 0.645,
670
+ "step": 4550
671
+ },
672
+ {
673
+ "epoch": 2.926208651399491,
674
+ "grad_norm": 1.854046640562392,
675
+ "learning_rate": 1.7823454489503526e-05,
676
+ "loss": 0.6491,
677
+ "step": 4600
678
+ },
679
+ {
680
+ "epoch": 2.9580152671755724,
681
+ "grad_norm": 1.9582134927711392,
682
+ "learning_rate": 1.775382174142177e-05,
683
+ "loss": 0.6542,
684
+ "step": 4650
685
+ },
686
+ {
687
+ "epoch": 2.989821882951654,
688
+ "grad_norm": 1.851650468210065,
689
+ "learning_rate": 1.768323320659578e-05,
690
+ "loss": 0.6542,
691
+ "step": 4700
692
+ },
693
+ {
694
+ "epoch": 3.0,
695
+ "eval_loss": 1.25302255153656,
696
+ "eval_runtime": 57.2963,
697
+ "eval_samples_per_second": 48.973,
698
+ "eval_steps_per_second": 1.536,
699
+ "step": 4716
700
+ },
701
+ {
702
+ "epoch": 3.0216284987277353,
703
+ "grad_norm": 1.9776148010713264,
704
+ "learning_rate": 1.7611697586229695e-05,
705
+ "loss": 0.4254,
706
+ "step": 4750
707
+ },
708
+ {
709
+ "epoch": 3.053435114503817,
710
+ "grad_norm": 2.1156326922920994,
711
+ "learning_rate": 1.753922369827162e-05,
712
+ "loss": 0.3248,
713
+ "step": 4800
714
+ },
715
+ {
716
+ "epoch": 3.0852417302798982,
717
+ "grad_norm": 1.927754824109064,
718
+ "learning_rate": 1.7465820476326656e-05,
719
+ "loss": 0.328,
720
+ "step": 4850
721
+ },
722
+ {
723
+ "epoch": 3.1170483460559795,
724
+ "grad_norm": 1.984505722526154,
725
+ "learning_rate": 1.7391496968555667e-05,
726
+ "loss": 0.3325,
727
+ "step": 4900
728
+ },
729
+ {
730
+ "epoch": 3.148854961832061,
731
+ "grad_norm": 2.070364334889199,
732
+ "learning_rate": 1.7316262336559978e-05,
733
+ "loss": 0.3348,
734
+ "step": 4950
735
+ },
736
+ {
737
+ "epoch": 3.1806615776081424,
738
+ "grad_norm": 1.9450509022734594,
739
+ "learning_rate": 1.7240125854252043e-05,
740
+ "loss": 0.3413,
741
+ "step": 5000
742
+ },
743
+ {
744
+ "epoch": 3.212468193384224,
745
+ "grad_norm": 2.0171683252659323,
746
+ "learning_rate": 1.7163096906712267e-05,
747
+ "loss": 0.3353,
748
+ "step": 5050
749
+ },
750
+ {
751
+ "epoch": 3.2442748091603053,
752
+ "grad_norm": 2.0051713529489046,
753
+ "learning_rate": 1.708518498903216e-05,
754
+ "loss": 0.3411,
755
+ "step": 5100
756
+ },
757
+ {
758
+ "epoch": 3.276081424936387,
759
+ "grad_norm": 2.0973923846500213,
760
+ "learning_rate": 1.7006399705143905e-05,
761
+ "loss": 0.3421,
762
+ "step": 5150
763
+ },
764
+ {
765
+ "epoch": 3.3078880407124682,
766
+ "grad_norm": 2.0572445637964103,
767
+ "learning_rate": 1.692675076663651e-05,
768
+ "loss": 0.338,
769
+ "step": 5200
770
+ },
771
+ {
772
+ "epoch": 3.3396946564885495,
773
+ "grad_norm": 2.1760429565142223,
774
+ "learning_rate": 1.6846247991558686e-05,
775
+ "loss": 0.3506,
776
+ "step": 5250
777
+ },
778
+ {
779
+ "epoch": 3.371501272264631,
780
+ "grad_norm": 1.9297734638867776,
781
+ "learning_rate": 1.6764901303208632e-05,
782
+ "loss": 0.344,
783
+ "step": 5300
784
+ },
785
+ {
786
+ "epoch": 3.4033078880407124,
787
+ "grad_norm": 2.051646120204668,
788
+ "learning_rate": 1.6682720728910815e-05,
789
+ "loss": 0.3531,
790
+ "step": 5350
791
+ },
792
+ {
793
+ "epoch": 3.435114503816794,
794
+ "grad_norm": 2.053007809243884,
795
+ "learning_rate": 1.659971639877992e-05,
796
+ "loss": 0.356,
797
+ "step": 5400
798
+ },
799
+ {
800
+ "epoch": 3.4669211195928753,
801
+ "grad_norm": 2.113810517440616,
802
+ "learning_rate": 1.6515898544472172e-05,
803
+ "loss": 0.3544,
804
+ "step": 5450
805
+ },
806
+ {
807
+ "epoch": 3.4987277353689565,
808
+ "grad_norm": 2.0372048460483207,
809
+ "learning_rate": 1.6431277497924093e-05,
810
+ "loss": 0.3461,
811
+ "step": 5500
812
+ },
813
+ {
814
+ "epoch": 3.530534351145038,
815
+ "grad_norm": 2.0430461667046753,
816
+ "learning_rate": 1.6345863690078942e-05,
817
+ "loss": 0.3527,
818
+ "step": 5550
819
+ },
820
+ {
821
+ "epoch": 3.5623409669211195,
822
+ "grad_norm": 2.0399250101984485,
823
+ "learning_rate": 1.6259667649600907e-05,
824
+ "loss": 0.3584,
825
+ "step": 5600
826
+ },
827
+ {
828
+ "epoch": 3.594147582697201,
829
+ "grad_norm": 2.1539893126413165,
830
+ "learning_rate": 1.6172700001577286e-05,
831
+ "loss": 0.3599,
832
+ "step": 5650
833
+ },
834
+ {
835
+ "epoch": 3.6259541984732824,
836
+ "grad_norm": 2.158545963475489,
837
+ "learning_rate": 1.6084971466208764e-05,
838
+ "loss": 0.3639,
839
+ "step": 5700
840
+ },
841
+ {
842
+ "epoch": 3.6577608142493636,
843
+ "grad_norm": 2.133349813061679,
844
+ "learning_rate": 1.599649285748798e-05,
845
+ "loss": 0.3604,
846
+ "step": 5750
847
+ },
848
+ {
849
+ "epoch": 3.6895674300254453,
850
+ "grad_norm": 2.1126907045423136,
851
+ "learning_rate": 1.5907275081866504e-05,
852
+ "loss": 0.3572,
853
+ "step": 5800
854
+ },
855
+ {
856
+ "epoch": 3.721374045801527,
857
+ "grad_norm": 2.1536592654492006,
858
+ "learning_rate": 1.5817329136910463e-05,
859
+ "loss": 0.3597,
860
+ "step": 5850
861
+ },
862
+ {
863
+ "epoch": 3.753180661577608,
864
+ "grad_norm": 1.9820017146238096,
865
+ "learning_rate": 1.5726666109944887e-05,
866
+ "loss": 0.366,
867
+ "step": 5900
868
+ },
869
+ {
870
+ "epoch": 3.7849872773536894,
871
+ "grad_norm": 2.0394074001285167,
872
+ "learning_rate": 1.563529717668702e-05,
873
+ "loss": 0.3586,
874
+ "step": 5950
875
+ },
876
+ {
877
+ "epoch": 3.816793893129771,
878
+ "grad_norm": 2.0797434739007548,
879
+ "learning_rate": 1.5543233599868744e-05,
880
+ "loss": 0.3611,
881
+ "step": 6000
882
+ },
883
+ {
884
+ "epoch": 3.8486005089058524,
885
+ "grad_norm": 1.9847509894940687,
886
+ "learning_rate": 1.5450486727848217e-05,
887
+ "loss": 0.3682,
888
+ "step": 6050
889
+ },
890
+ {
891
+ "epoch": 3.880407124681934,
892
+ "grad_norm": 2.0762467778933806,
893
+ "learning_rate": 1.535706799321106e-05,
894
+ "loss": 0.367,
895
+ "step": 6100
896
+ },
897
+ {
898
+ "epoch": 3.9122137404580153,
899
+ "grad_norm": 2.08727307746701,
900
+ "learning_rate": 1.526298891136105e-05,
901
+ "loss": 0.3661,
902
+ "step": 6150
903
+ },
904
+ {
905
+ "epoch": 3.9440203562340965,
906
+ "grad_norm": 2.2966942638832544,
907
+ "learning_rate": 1.5168261079100695e-05,
908
+ "loss": 0.362,
909
+ "step": 6200
910
+ },
911
+ {
912
+ "epoch": 3.975826972010178,
913
+ "grad_norm": 2.052981094095626,
914
+ "learning_rate": 1.5072896173201697e-05,
915
+ "loss": 0.3692,
916
+ "step": 6250
917
+ },
918
+ {
919
+ "epoch": 4.0,
920
+ "eval_loss": 1.4977455139160156,
921
+ "eval_runtime": 51.4362,
922
+ "eval_samples_per_second": 54.553,
923
+ "eval_steps_per_second": 1.711,
924
+ "step": 6288
925
+ },
926
+ {
927
+ "epoch": 4.00763358778626,
928
+ "grad_norm": 2.107958347254252,
929
+ "learning_rate": 1.4976905948965637e-05,
930
+ "loss": 0.3142,
931
+ "step": 6300
932
+ },
933
+ {
934
+ "epoch": 4.039440203562341,
935
+ "grad_norm": 1.9505610066311394,
936
+ "learning_rate": 1.4880302238774911e-05,
937
+ "loss": 0.1694,
938
+ "step": 6350
939
+ },
940
+ {
941
+ "epoch": 4.071246819338422,
942
+ "grad_norm": 1.8629359372754337,
943
+ "learning_rate": 1.4783096950634211e-05,
944
+ "loss": 0.1727,
945
+ "step": 6400
946
+ },
947
+ {
948
+ "epoch": 4.103053435114504,
949
+ "grad_norm": 1.8272931243832953,
950
+ "learning_rate": 1.468530206670265e-05,
951
+ "loss": 0.1707,
952
+ "step": 6450
953
+ },
954
+ {
955
+ "epoch": 4.134860050890585,
956
+ "grad_norm": 1.982558356194926,
957
+ "learning_rate": 1.4586929641816783e-05,
958
+ "loss": 0.1757,
959
+ "step": 6500
960
+ },
961
+ {
962
+ "epoch": 4.166666666666667,
963
+ "grad_norm": 1.7448326286779277,
964
+ "learning_rate": 1.4487991802004625e-05,
965
+ "loss": 0.1777,
966
+ "step": 6550
967
+ },
968
+ {
969
+ "epoch": 4.198473282442748,
970
+ "grad_norm": 1.9280680517187911,
971
+ "learning_rate": 1.4388500742990934e-05,
972
+ "loss": 0.1785,
973
+ "step": 6600
974
+ },
975
+ {
976
+ "epoch": 4.230279898218829,
977
+ "grad_norm": 1.9089795547388508,
978
+ "learning_rate": 1.4288468728693889e-05,
979
+ "loss": 0.181,
980
+ "step": 6650
981
+ },
982
+ {
983
+ "epoch": 4.262086513994911,
984
+ "grad_norm": 2.0037836680476566,
985
+ "learning_rate": 1.4187908089713348e-05,
986
+ "loss": 0.1823,
987
+ "step": 6700
988
+ },
989
+ {
990
+ "epoch": 4.293893129770993,
991
+ "grad_norm": 1.8739930764604456,
992
+ "learning_rate": 1.4086831221810897e-05,
993
+ "loss": 0.1812,
994
+ "step": 6750
995
+ },
996
+ {
997
+ "epoch": 4.325699745547074,
998
+ "grad_norm": 1.9039560558559352,
999
+ "learning_rate": 1.3985250584381884e-05,
1000
+ "loss": 0.1848,
1001
+ "step": 6800
1002
+ },
1003
+ {
1004
+ "epoch": 4.357506361323155,
1005
+ "grad_norm": 1.979148934201314,
1006
+ "learning_rate": 1.3883178698919578e-05,
1007
+ "loss": 0.183,
1008
+ "step": 6850
1009
+ },
1010
+ {
1011
+ "epoch": 4.3893129770992365,
1012
+ "grad_norm": 2.037387611365519,
1013
+ "learning_rate": 1.378062814747168e-05,
1014
+ "loss": 0.1858,
1015
+ "step": 6900
1016
+ },
1017
+ {
1018
+ "epoch": 4.421119592875318,
1019
+ "grad_norm": 2.081816352916778,
1020
+ "learning_rate": 1.3677611571089406e-05,
1021
+ "loss": 0.1889,
1022
+ "step": 6950
1023
+ },
1024
+ {
1025
+ "epoch": 4.4529262086514,
1026
+ "grad_norm": 2.0722431553233993,
1027
+ "learning_rate": 1.3574141668269235e-05,
1028
+ "loss": 0.1876,
1029
+ "step": 7000
1030
+ },
1031
+ {
1032
+ "epoch": 4.484732824427481,
1033
+ "grad_norm": 1.893880597719728,
1034
+ "learning_rate": 1.3470231193387639e-05,
1035
+ "loss": 0.1868,
1036
+ "step": 7050
1037
+ },
1038
+ {
1039
+ "epoch": 4.516539440203562,
1040
+ "grad_norm": 2.136980665093255,
1041
+ "learning_rate": 1.3365892955128876e-05,
1042
+ "loss": 0.1925,
1043
+ "step": 7100
1044
+ },
1045
+ {
1046
+ "epoch": 4.548346055979644,
1047
+ "grad_norm": 2.2126003717690144,
1048
+ "learning_rate": 1.326113981490611e-05,
1049
+ "loss": 0.1868,
1050
+ "step": 7150
1051
+ },
1052
+ {
1053
+ "epoch": 4.580152671755725,
1054
+ "grad_norm": 2.295568251011161,
1055
+ "learning_rate": 1.315598468527604e-05,
1056
+ "loss": 0.1855,
1057
+ "step": 7200
1058
+ },
1059
+ {
1060
+ "epoch": 4.611959287531807,
1061
+ "grad_norm": 1.886004237984628,
1062
+ "learning_rate": 1.30504405283472e-05,
1063
+ "loss": 0.1891,
1064
+ "step": 7250
1065
+ },
1066
+ {
1067
+ "epoch": 4.643765903307888,
1068
+ "grad_norm": 2.0731100810122065,
1069
+ "learning_rate": 1.294452035418218e-05,
1070
+ "loss": 0.1901,
1071
+ "step": 7300
1072
+ },
1073
+ {
1074
+ "epoch": 4.675572519083969,
1075
+ "grad_norm": 1.8758598657873944,
1076
+ "learning_rate": 1.2838237219193897e-05,
1077
+ "loss": 0.1898,
1078
+ "step": 7350
1079
+ },
1080
+ {
1081
+ "epoch": 4.707379134860051,
1082
+ "grad_norm": 1.9515874051409456,
1083
+ "learning_rate": 1.2731604224536208e-05,
1084
+ "loss": 0.1895,
1085
+ "step": 7400
1086
+ },
1087
+ {
1088
+ "epoch": 4.739185750636132,
1089
+ "grad_norm": 1.972736566907763,
1090
+ "learning_rate": 1.262463451448895e-05,
1091
+ "loss": 0.1888,
1092
+ "step": 7450
1093
+ },
1094
+ {
1095
+ "epoch": 4.770992366412214,
1096
+ "grad_norm": 1.9482783400297305,
1097
+ "learning_rate": 1.2517341274837702e-05,
1098
+ "loss": 0.1931,
1099
+ "step": 7500
1100
+ },
1101
+ {
1102
+ "epoch": 4.802798982188295,
1103
+ "grad_norm": 1.8471591343739595,
1104
+ "learning_rate": 1.2409737731248418e-05,
1105
+ "loss": 0.1903,
1106
+ "step": 7550
1107
+ },
1108
+ {
1109
+ "epoch": 4.8346055979643765,
1110
+ "grad_norm": 2.025410052096641,
1111
+ "learning_rate": 1.2301837147637137e-05,
1112
+ "loss": 0.1926,
1113
+ "step": 7600
1114
+ },
1115
+ {
1116
+ "epoch": 4.866412213740458,
1117
+ "grad_norm": 1.8904775058623584,
1118
+ "learning_rate": 1.2193652824535e-05,
1119
+ "loss": 0.1909,
1120
+ "step": 7650
1121
+ },
1122
+ {
1123
+ "epoch": 4.898218829516539,
1124
+ "grad_norm": 2.0404591880691405,
1125
+ "learning_rate": 1.2085198097448732e-05,
1126
+ "loss": 0.1909,
1127
+ "step": 7700
1128
+ },
1129
+ {
1130
+ "epoch": 4.930025445292621,
1131
+ "grad_norm": 1.9452174397216788,
1132
+ "learning_rate": 1.197648633521681e-05,
1133
+ "loss": 0.19,
1134
+ "step": 7750
1135
+ },
1136
+ {
1137
+ "epoch": 4.961832061068702,
1138
+ "grad_norm": 2.098087417526516,
1139
+ "learning_rate": 1.1867530938361557e-05,
1140
+ "loss": 0.1953,
1141
+ "step": 7800
1142
+ },
1143
+ {
1144
+ "epoch": 4.993638676844784,
1145
+ "grad_norm": 2.028699161436086,
1146
+ "learning_rate": 1.1758345337437284e-05,
1147
+ "loss": 0.1932,
1148
+ "step": 7850
1149
+ },
1150
+ {
1151
+ "epoch": 5.0,
1152
+ "eval_loss": 1.913898229598999,
1153
+ "eval_runtime": 54.0702,
1154
+ "eval_samples_per_second": 51.896,
1155
+ "eval_steps_per_second": 1.628,
1156
+ "step": 7860
1157
+ },
1158
+ {
1159
+ "epoch": 5.025445292620865,
1160
+ "grad_norm": 1.4793683076824136,
1161
+ "learning_rate": 1.164894299137476e-05,
1162
+ "loss": 0.1166,
1163
+ "step": 7900
1164
+ },
1165
+ {
1166
+ "epoch": 5.057251908396947,
1167
+ "grad_norm": 1.5651227153942533,
1168
+ "learning_rate": 1.1539337385822179e-05,
1169
+ "loss": 0.1006,
1170
+ "step": 7950
1171
+ },
1172
+ {
1173
+ "epoch": 5.089058524173028,
1174
+ "grad_norm": 1.7359295760816373,
1175
+ "learning_rate": 1.1429542031482828e-05,
1176
+ "loss": 0.1037,
1177
+ "step": 8000
1178
+ },
1179
+ {
1180
+ "epoch": 5.120865139949109,
1181
+ "grad_norm": 1.5516562484547498,
1182
+ "learning_rate": 1.1319570462449664e-05,
1183
+ "loss": 0.1073,
1184
+ "step": 8050
1185
+ },
1186
+ {
1187
+ "epoch": 5.152671755725191,
1188
+ "grad_norm": 1.7147421352890893,
1189
+ "learning_rate": 1.120943623453703e-05,
1190
+ "loss": 0.1048,
1191
+ "step": 8100
1192
+ },
1193
+ {
1194
+ "epoch": 5.184478371501272,
1195
+ "grad_norm": 1.588020821919146,
1196
+ "learning_rate": 1.1099152923609654e-05,
1197
+ "loss": 0.1046,
1198
+ "step": 8150
1199
+ },
1200
+ {
1201
+ "epoch": 5.216284987277354,
1202
+ "grad_norm": 1.4744529210130621,
1203
+ "learning_rate": 1.0988734123909218e-05,
1204
+ "loss": 0.1053,
1205
+ "step": 8200
1206
+ },
1207
+ {
1208
+ "epoch": 5.248091603053435,
1209
+ "grad_norm": 1.5149467562017078,
1210
+ "learning_rate": 1.0878193446378633e-05,
1211
+ "loss": 0.1067,
1212
+ "step": 8250
1213
+ },
1214
+ {
1215
+ "epoch": 5.2798982188295165,
1216
+ "grad_norm": 1.641740858676932,
1217
+ "learning_rate": 1.076754451698427e-05,
1218
+ "loss": 0.1052,
1219
+ "step": 8300
1220
+ },
1221
+ {
1222
+ "epoch": 5.311704834605598,
1223
+ "grad_norm": 1.9805138911324567,
1224
+ "learning_rate": 1.0656800975036328e-05,
1225
+ "loss": 0.1073,
1226
+ "step": 8350
1227
+ },
1228
+ {
1229
+ "epoch": 5.34351145038168,
1230
+ "grad_norm": 1.538007502423292,
1231
+ "learning_rate": 1.0545976471507573e-05,
1232
+ "loss": 0.1092,
1233
+ "step": 8400
1234
+ },
1235
+ {
1236
+ "epoch": 5.375318066157761,
1237
+ "grad_norm": 1.5971589586731525,
1238
+ "learning_rate": 1.0435084667350619e-05,
1239
+ "loss": 0.1075,
1240
+ "step": 8450
1241
+ },
1242
+ {
1243
+ "epoch": 5.407124681933842,
1244
+ "grad_norm": 1.690135861247903,
1245
+ "learning_rate": 1.0324139231813997e-05,
1246
+ "loss": 0.1074,
1247
+ "step": 8500
1248
+ },
1249
+ {
1250
+ "epoch": 5.438931297709924,
1251
+ "grad_norm": 1.6897524323080446,
1252
+ "learning_rate": 1.0213153840757198e-05,
1253
+ "loss": 0.1099,
1254
+ "step": 8550
1255
+ },
1256
+ {
1257
+ "epoch": 5.470737913486005,
1258
+ "grad_norm": 1.6020111115696878,
1259
+ "learning_rate": 1.0102142174964883e-05,
1260
+ "loss": 0.1089,
1261
+ "step": 8600
1262
+ },
1263
+ {
1264
+ "epoch": 5.502544529262087,
1265
+ "grad_norm": 1.721827372559917,
1266
+ "learning_rate": 9.991117918460518e-06,
1267
+ "loss": 0.1085,
1268
+ "step": 8650
1269
+ },
1270
+ {
1271
+ "epoch": 5.534351145038168,
1272
+ "grad_norm": 1.5374549183894768,
1273
+ "learning_rate": 9.880094756819572e-06,
1274
+ "loss": 0.1088,
1275
+ "step": 8700
1276
+ },
1277
+ {
1278
+ "epoch": 5.566157760814249,
1279
+ "grad_norm": 1.63155554721324,
1280
+ "learning_rate": 9.769086375482561e-06,
1281
+ "loss": 0.1095,
1282
+ "step": 8750
1283
+ },
1284
+ {
1285
+ "epoch": 5.597964376590331,
1286
+ "grad_norm": 1.6722391499109936,
1287
+ "learning_rate": 9.658106458068086e-06,
1288
+ "loss": 0.1097,
1289
+ "step": 8800
1290
+ },
1291
+ {
1292
+ "epoch": 5.629770992366412,
1293
+ "grad_norm": 1.6914082156675518,
1294
+ "learning_rate": 9.547168684686088e-06,
1295
+ "loss": 0.1092,
1296
+ "step": 8850
1297
+ },
1298
+ {
1299
+ "epoch": 5.661577608142494,
1300
+ "grad_norm": 1.6060594589970834,
1301
+ "learning_rate": 9.436286730251568e-06,
1302
+ "loss": 0.1109,
1303
+ "step": 8900
1304
+ },
1305
+ {
1306
+ "epoch": 5.693384223918575,
1307
+ "grad_norm": 1.6457178552761271,
1308
+ "learning_rate": 9.32547426279892e-06,
1309
+ "loss": 0.1101,
1310
+ "step": 8950
1311
+ },
1312
+ {
1313
+ "epoch": 5.7251908396946565,
1314
+ "grad_norm": 1.6736941545247992,
1315
+ "learning_rate": 9.214744941797115e-06,
1316
+ "loss": 0.1087,
1317
+ "step": 9000
1318
+ },
1319
+ {
1320
+ "epoch": 5.756997455470738,
1321
+ "grad_norm": 1.6655682373835654,
1322
+ "learning_rate": 9.104112416465949e-06,
1323
+ "loss": 0.1072,
1324
+ "step": 9050
1325
+ },
1326
+ {
1327
+ "epoch": 5.788804071246819,
1328
+ "grad_norm": 1.716312631900298,
1329
+ "learning_rate": 8.993590324093548e-06,
1330
+ "loss": 0.1096,
1331
+ "step": 9100
1332
+ },
1333
+ {
1334
+ "epoch": 5.820610687022901,
1335
+ "grad_norm": 1.6302159083496506,
1336
+ "learning_rate": 8.883192288355362e-06,
1337
+ "loss": 0.1093,
1338
+ "step": 9150
1339
+ },
1340
+ {
1341
+ "epoch": 5.852417302798982,
1342
+ "grad_norm": 1.6265328321818522,
1343
+ "learning_rate": 8.772931917634792e-06,
1344
+ "loss": 0.1101,
1345
+ "step": 9200
1346
+ },
1347
+ {
1348
+ "epoch": 5.8842239185750635,
1349
+ "grad_norm": 1.611412246032975,
1350
+ "learning_rate": 8.662822803345762e-06,
1351
+ "loss": 0.1082,
1352
+ "step": 9250
1353
+ },
1354
+ {
1355
+ "epoch": 5.916030534351145,
1356
+ "grad_norm": 1.523038058167952,
1357
+ "learning_rate": 8.552878518257335e-06,
1358
+ "loss": 0.1098,
1359
+ "step": 9300
1360
+ },
1361
+ {
1362
+ "epoch": 5.947837150127226,
1363
+ "grad_norm": 1.652523299337976,
1364
+ "learning_rate": 8.44311261482065e-06,
1365
+ "loss": 0.1093,
1366
+ "step": 9350
1367
+ },
1368
+ {
1369
+ "epoch": 5.979643765903308,
1370
+ "grad_norm": 1.6687963754361035,
1371
+ "learning_rate": 8.333538623498357e-06,
1372
+ "loss": 0.1083,
1373
+ "step": 9400
1374
+ },
1375
+ {
1376
+ "epoch": 6.0,
1377
+ "eval_loss": 2.39013671875,
1378
+ "eval_runtime": 57.4954,
1379
+ "eval_samples_per_second": 48.804,
1380
+ "eval_steps_per_second": 1.531,
1381
+ "step": 9432
1382
+ },
1383
+ {
1384
+ "epoch": 6.011450381679389,
1385
+ "grad_norm": 1.1640024621937262,
1386
+ "learning_rate": 8.224170051096769e-06,
1387
+ "loss": 0.0926,
1388
+ "step": 9450
1389
+ },
1390
+ {
1391
+ "epoch": 6.043256997455471,
1392
+ "grad_norm": 1.0821873479243533,
1393
+ "learning_rate": 8.115020379100913e-06,
1394
+ "loss": 0.0686,
1395
+ "step": 9500
1396
+ },
1397
+ {
1398
+ "epoch": 6.075063613231552,
1399
+ "grad_norm": 1.0429744336325093,
1400
+ "learning_rate": 8.006103062012725e-06,
1401
+ "loss": 0.0709,
1402
+ "step": 9550
1403
+ },
1404
+ {
1405
+ "epoch": 6.106870229007634,
1406
+ "grad_norm": 1.0982634834958693,
1407
+ "learning_rate": 7.897431525692557e-06,
1408
+ "loss": 0.0699,
1409
+ "step": 9600
1410
+ },
1411
+ {
1412
+ "epoch": 6.138676844783715,
1413
+ "grad_norm": 1.1260866233749833,
1414
+ "learning_rate": 7.789019165704218e-06,
1415
+ "loss": 0.0721,
1416
+ "step": 9650
1417
+ },
1418
+ {
1419
+ "epoch": 6.1704834605597965,
1420
+ "grad_norm": 1.2094196230310894,
1421
+ "learning_rate": 7.680879345663745e-06,
1422
+ "loss": 0.0717,
1423
+ "step": 9700
1424
+ },
1425
+ {
1426
+ "epoch": 6.202290076335878,
1427
+ "grad_norm": 1.1634423083927459,
1428
+ "learning_rate": 7.573025395592125e-06,
1429
+ "loss": 0.0715,
1430
+ "step": 9750
1431
+ },
1432
+ {
1433
+ "epoch": 6.234096692111959,
1434
+ "grad_norm": 1.2985863539363118,
1435
+ "learning_rate": 7.4654706102721405e-06,
1436
+ "loss": 0.0728,
1437
+ "step": 9800
1438
+ },
1439
+ {
1440
+ "epoch": 6.265903307888041,
1441
+ "grad_norm": 1.2070636203209166,
1442
+ "learning_rate": 7.358228247609569e-06,
1443
+ "loss": 0.0733,
1444
+ "step": 9850
1445
+ },
1446
+ {
1447
+ "epoch": 6.297709923664122,
1448
+ "grad_norm": 1.160714182767047,
1449
+ "learning_rate": 7.251311526998934e-06,
1450
+ "loss": 0.0721,
1451
+ "step": 9900
1452
+ },
1453
+ {
1454
+ "epoch": 6.3295165394402035,
1455
+ "grad_norm": 1.2885727319815767,
1456
+ "learning_rate": 7.1447336276939915e-06,
1457
+ "loss": 0.073,
1458
+ "step": 9950
1459
+ },
1460
+ {
1461
+ "epoch": 6.361323155216285,
1462
+ "grad_norm": 1.1465122232062648,
1463
+ "learning_rate": 7.038507687183167e-06,
1464
+ "loss": 0.0718,
1465
+ "step": 10000
1466
+ },
1467
+ {
1468
+ "epoch": 6.393129770992366,
1469
+ "grad_norm": 1.2099805716340462,
1470
+ "learning_rate": 6.932646799570144e-06,
1471
+ "loss": 0.0744,
1472
+ "step": 10050
1473
+ },
1474
+ {
1475
+ "epoch": 6.424936386768448,
1476
+ "grad_norm": 1.1587707031129502,
1477
+ "learning_rate": 6.827164013959805e-06,
1478
+ "loss": 0.0725,
1479
+ "step": 10100
1480
+ },
1481
+ {
1482
+ "epoch": 6.456743002544529,
1483
+ "grad_norm": 1.182892310121918,
1484
+ "learning_rate": 6.722072332849697e-06,
1485
+ "loss": 0.0735,
1486
+ "step": 10150
1487
+ },
1488
+ {
1489
+ "epoch": 6.488549618320611,
1490
+ "grad_norm": 1.2622584554849223,
1491
+ "learning_rate": 6.617384710527282e-06,
1492
+ "loss": 0.0733,
1493
+ "step": 10200
1494
+ },
1495
+ {
1496
+ "epoch": 6.520356234096692,
1497
+ "grad_norm": 1.3226325470322322,
1498
+ "learning_rate": 6.513114051473094e-06,
1499
+ "loss": 0.0742,
1500
+ "step": 10250
1501
+ },
1502
+ {
1503
+ "epoch": 6.552162849872774,
1504
+ "grad_norm": 1.3036627900457751,
1505
+ "learning_rate": 6.409273208770039e-06,
1506
+ "loss": 0.0733,
1507
+ "step": 10300
1508
+ },
1509
+ {
1510
+ "epoch": 6.583969465648855,
1511
+ "grad_norm": 1.2326022863178456,
1512
+ "learning_rate": 6.305874982519064e-06,
1513
+ "loss": 0.0748,
1514
+ "step": 10350
1515
+ },
1516
+ {
1517
+ "epoch": 6.6157760814249365,
1518
+ "grad_norm": 1.1888251941386172,
1519
+ "learning_rate": 6.202932118261309e-06,
1520
+ "loss": 0.0735,
1521
+ "step": 10400
1522
+ },
1523
+ {
1524
+ "epoch": 6.647582697201018,
1525
+ "grad_norm": 1.2979512300254676,
1526
+ "learning_rate": 6.100457305407024e-06,
1527
+ "loss": 0.0742,
1528
+ "step": 10450
1529
+ },
1530
+ {
1531
+ "epoch": 6.679389312977099,
1532
+ "grad_norm": 1.2201598913375877,
1533
+ "learning_rate": 5.998463175671382e-06,
1534
+ "loss": 0.0731,
1535
+ "step": 10500
1536
+ },
1537
+ {
1538
+ "epoch": 6.711195928753181,
1539
+ "grad_norm": 1.074538323760813,
1540
+ "learning_rate": 5.896962301517415e-06,
1541
+ "loss": 0.072,
1542
+ "step": 10550
1543
+ },
1544
+ {
1545
+ "epoch": 6.743002544529262,
1546
+ "grad_norm": 1.154410840799108,
1547
+ "learning_rate": 5.795967194606249e-06,
1548
+ "loss": 0.0733,
1549
+ "step": 10600
1550
+ },
1551
+ {
1552
+ "epoch": 6.7748091603053435,
1553
+ "grad_norm": 1.1746045784185184,
1554
+ "learning_rate": 5.695490304254825e-06,
1555
+ "loss": 0.0722,
1556
+ "step": 10650
1557
+ },
1558
+ {
1559
+ "epoch": 6.806615776081425,
1560
+ "grad_norm": 1.1366587055886472,
1561
+ "learning_rate": 5.59554401590134e-06,
1562
+ "loss": 0.072,
1563
+ "step": 10700
1564
+ },
1565
+ {
1566
+ "epoch": 6.838422391857506,
1567
+ "grad_norm": 1.1414915705802602,
1568
+ "learning_rate": 5.496140649578507e-06,
1569
+ "loss": 0.073,
1570
+ "step": 10750
1571
+ },
1572
+ {
1573
+ "epoch": 6.870229007633588,
1574
+ "grad_norm": 1.0658028472882173,
1575
+ "learning_rate": 5.397292458394923e-06,
1576
+ "loss": 0.0711,
1577
+ "step": 10800
1578
+ },
1579
+ {
1580
+ "epoch": 6.902035623409669,
1581
+ "grad_norm": 1.13284721647744,
1582
+ "learning_rate": 5.2990116270246795e-06,
1583
+ "loss": 0.0713,
1584
+ "step": 10850
1585
+ },
1586
+ {
1587
+ "epoch": 6.933842239185751,
1588
+ "grad_norm": 1.1850532152524302,
1589
+ "learning_rate": 5.201310270205375e-06,
1590
+ "loss": 0.0714,
1591
+ "step": 10900
1592
+ },
1593
+ {
1594
+ "epoch": 6.965648854961832,
1595
+ "grad_norm": 1.4139501578857867,
1596
+ "learning_rate": 5.104200431244802e-06,
1597
+ "loss": 0.0716,
1598
+ "step": 10950
1599
+ },
1600
+ {
1601
+ "epoch": 6.997455470737913,
1602
+ "grad_norm": 1.3206202357844146,
1603
+ "learning_rate": 5.007694080536379e-06,
1604
+ "loss": 0.0721,
1605
+ "step": 11000
1606
+ },
1607
+ {
1608
+ "epoch": 7.0,
1609
+ "eval_loss": 2.679978132247925,
1610
+ "eval_runtime": 55.9717,
1611
+ "eval_samples_per_second": 50.132,
1612
+ "eval_steps_per_second": 1.572,
1613
+ "step": 11004
1614
+ },
1615
+ {
1616
+ "epoch": 7.029262086513995,
1617
+ "grad_norm": 0.7594215283173359,
1618
+ "learning_rate": 4.911803114083635e-06,
1619
+ "loss": 0.0532,
1620
+ "step": 11050
1621
+ },
1622
+ {
1623
+ "epoch": 7.061068702290076,
1624
+ "grad_norm": 0.7570171860957418,
1625
+ "learning_rate": 4.816539352033806e-06,
1626
+ "loss": 0.0509,
1627
+ "step": 11100
1628
+ },
1629
+ {
1630
+ "epoch": 7.092875318066158,
1631
+ "grad_norm": 0.7549673159769185,
1632
+ "learning_rate": 4.721914537220807e-06,
1633
+ "loss": 0.0522,
1634
+ "step": 11150
1635
+ },
1636
+ {
1637
+ "epoch": 7.124681933842239,
1638
+ "grad_norm": 0.8233969961008896,
1639
+ "learning_rate": 4.627940333717758e-06,
1640
+ "loss": 0.0527,
1641
+ "step": 11200
1642
+ },
1643
+ {
1644
+ "epoch": 7.156488549618321,
1645
+ "grad_norm": 0.8166861593202606,
1646
+ "learning_rate": 4.534628325399157e-06,
1647
+ "loss": 0.052,
1648
+ "step": 11250
1649
+ },
1650
+ {
1651
+ "epoch": 7.188295165394402,
1652
+ "grad_norm": 0.9851243027512826,
1653
+ "learning_rate": 4.441990014513016e-06,
1654
+ "loss": 0.0524,
1655
+ "step": 11300
1656
+ },
1657
+ {
1658
+ "epoch": 7.2201017811704835,
1659
+ "grad_norm": 0.8447465274214352,
1660
+ "learning_rate": 4.3500368202629775e-06,
1661
+ "loss": 0.0522,
1662
+ "step": 11350
1663
+ },
1664
+ {
1665
+ "epoch": 7.251908396946565,
1666
+ "grad_norm": 0.750732927712184,
1667
+ "learning_rate": 4.2587800774007485e-06,
1668
+ "loss": 0.0528,
1669
+ "step": 11400
1670
+ },
1671
+ {
1672
+ "epoch": 7.283715012722646,
1673
+ "grad_norm": 0.7801419309981809,
1674
+ "learning_rate": 4.168231034828873e-06,
1675
+ "loss": 0.0528,
1676
+ "step": 11450
1677
+ },
1678
+ {
1679
+ "epoch": 7.315521628498728,
1680
+ "grad_norm": 0.6873017424208359,
1681
+ "learning_rate": 4.078400854214136e-06,
1682
+ "loss": 0.052,
1683
+ "step": 11500
1684
+ },
1685
+ {
1686
+ "epoch": 7.347328244274809,
1687
+ "grad_norm": 0.8809132112218713,
1688
+ "learning_rate": 3.989300608611709e-06,
1689
+ "loss": 0.0538,
1690
+ "step": 11550
1691
+ },
1692
+ {
1693
+ "epoch": 7.379134860050891,
1694
+ "grad_norm": 0.8614536390106059,
1695
+ "learning_rate": 3.90094128110018e-06,
1696
+ "loss": 0.0532,
1697
+ "step": 11600
1698
+ },
1699
+ {
1700
+ "epoch": 7.410941475826972,
1701
+ "grad_norm": 0.7727143215643426,
1702
+ "learning_rate": 3.8133337634277556e-06,
1703
+ "loss": 0.0534,
1704
+ "step": 11650
1705
+ },
1706
+ {
1707
+ "epoch": 7.442748091603053,
1708
+ "grad_norm": 0.8389043129325592,
1709
+ "learning_rate": 3.726488854669631e-06,
1710
+ "loss": 0.0535,
1711
+ "step": 11700
1712
+ },
1713
+ {
1714
+ "epoch": 7.474554707379135,
1715
+ "grad_norm": 0.7673983015748496,
1716
+ "learning_rate": 3.640417259896856e-06,
1717
+ "loss": 0.0525,
1718
+ "step": 11750
1719
+ },
1720
+ {
1721
+ "epoch": 7.506361323155216,
1722
+ "grad_norm": 0.8586943513972485,
1723
+ "learning_rate": 3.5551295888567304e-06,
1724
+ "loss": 0.0527,
1725
+ "step": 11800
1726
+ },
1727
+ {
1728
+ "epoch": 7.538167938931298,
1729
+ "grad_norm": 0.8250658330704663,
1730
+ "learning_rate": 3.470636354665006e-06,
1731
+ "loss": 0.0528,
1732
+ "step": 11850
1733
+ },
1734
+ {
1735
+ "epoch": 7.569974554707379,
1736
+ "grad_norm": 0.9181462088501849,
1737
+ "learning_rate": 3.386947972509944e-06,
1738
+ "loss": 0.0531,
1739
+ "step": 11900
1740
+ },
1741
+ {
1742
+ "epoch": 7.601781170483461,
1743
+ "grad_norm": 0.7612511386277396,
1744
+ "learning_rate": 3.3040747583684864e-06,
1745
+ "loss": 0.0534,
1746
+ "step": 11950
1747
+ },
1748
+ {
1749
+ "epoch": 7.633587786259542,
1750
+ "grad_norm": 0.8374071182256133,
1751
+ "learning_rate": 3.2220269277346437e-06,
1752
+ "loss": 0.0525,
1753
+ "step": 12000
1754
+ },
1755
+ {
1756
+ "epoch": 7.6653944020356235,
1757
+ "grad_norm": 0.6843857705551388,
1758
+ "learning_rate": 3.140814594360254e-06,
1759
+ "loss": 0.0532,
1760
+ "step": 12050
1761
+ },
1762
+ {
1763
+ "epoch": 7.697201017811705,
1764
+ "grad_norm": 0.7472725928560873,
1765
+ "learning_rate": 3.060447769008311e-06,
1766
+ "loss": 0.053,
1767
+ "step": 12100
1768
+ },
1769
+ {
1770
+ "epoch": 7.729007633587786,
1771
+ "grad_norm": 0.6742611901517995,
1772
+ "learning_rate": 2.980936358218951e-06,
1773
+ "loss": 0.0521,
1774
+ "step": 12150
1775
+ },
1776
+ {
1777
+ "epoch": 7.760814249363868,
1778
+ "grad_norm": 0.7447558302371876,
1779
+ "learning_rate": 2.902290163088334e-06,
1780
+ "loss": 0.0523,
1781
+ "step": 12200
1782
+ },
1783
+ {
1784
+ "epoch": 7.792620865139949,
1785
+ "grad_norm": 0.8357691068645717,
1786
+ "learning_rate": 2.824518878060475e-06,
1787
+ "loss": 0.0522,
1788
+ "step": 12250
1789
+ },
1790
+ {
1791
+ "epoch": 7.824427480916031,
1792
+ "grad_norm": 0.7615949867158718,
1793
+ "learning_rate": 2.7476320897322507e-06,
1794
+ "loss": 0.0528,
1795
+ "step": 12300
1796
+ },
1797
+ {
1798
+ "epoch": 7.856234096692112,
1799
+ "grad_norm": 0.6736658957587341,
1800
+ "learning_rate": 2.6716392756717025e-06,
1801
+ "loss": 0.0528,
1802
+ "step": 12350
1803
+ },
1804
+ {
1805
+ "epoch": 7.888040712468193,
1806
+ "grad_norm": 0.8585452571929305,
1807
+ "learning_rate": 2.596549803249748e-06,
1808
+ "loss": 0.0523,
1809
+ "step": 12400
1810
+ },
1811
+ {
1812
+ "epoch": 7.919847328244275,
1813
+ "grad_norm": 0.7813934967634093,
1814
+ "learning_rate": 2.522372928485526e-06,
1815
+ "loss": 0.052,
1816
+ "step": 12450
1817
+ },
1818
+ {
1819
+ "epoch": 7.951653944020356,
1820
+ "grad_norm": 0.6924594723451242,
1821
+ "learning_rate": 2.4491177949054066e-06,
1822
+ "loss": 0.0526,
1823
+ "step": 12500
1824
+ },
1825
+ {
1826
+ "epoch": 7.983460559796438,
1827
+ "grad_norm": 0.797811753846389,
1828
+ "learning_rate": 2.376793432415935e-06,
1829
+ "loss": 0.0521,
1830
+ "step": 12550
1831
+ },
1832
+ {
1833
+ "epoch": 8.0,
1834
+ "eval_loss": 2.9158363342285156,
1835
+ "eval_runtime": 54.0838,
1836
+ "eval_samples_per_second": 51.882,
1837
+ "eval_steps_per_second": 1.627,
1838
+ "step": 12576
1839
+ },
1840
+ {
1841
+ "epoch": 8.01526717557252,
1842
+ "grad_norm": 0.47699575150025136,
1843
+ "learning_rate": 2.3054087561907133e-06,
1844
+ "loss": 0.0476,
1845
+ "step": 12600
1846
+ },
1847
+ {
1848
+ "epoch": 8.0470737913486,
1849
+ "grad_norm": 0.44472989078715447,
1850
+ "learning_rate": 2.2349725655714784e-06,
1851
+ "loss": 0.0408,
1852
+ "step": 12650
1853
+ },
1854
+ {
1855
+ "epoch": 8.078880407124682,
1856
+ "grad_norm": 0.4166634413980581,
1857
+ "learning_rate": 2.165493542983439e-06,
1858
+ "loss": 0.04,
1859
+ "step": 12700
1860
+ },
1861
+ {
1862
+ "epoch": 8.110687022900763,
1863
+ "grad_norm": 0.4826499882370959,
1864
+ "learning_rate": 2.0969802528650052e-06,
1865
+ "loss": 0.0406,
1866
+ "step": 12750
1867
+ },
1868
+ {
1869
+ "epoch": 8.142493638676845,
1870
+ "grad_norm": 0.5525649043803899,
1871
+ "learning_rate": 2.0294411406121017e-06,
1872
+ "loss": 0.0403,
1873
+ "step": 12800
1874
+ },
1875
+ {
1876
+ "epoch": 8.174300254452927,
1877
+ "grad_norm": 0.6770167907516378,
1878
+ "learning_rate": 1.9628845315371135e-06,
1879
+ "loss": 0.0416,
1880
+ "step": 12850
1881
+ },
1882
+ {
1883
+ "epoch": 8.206106870229007,
1884
+ "grad_norm": 0.5609786348847312,
1885
+ "learning_rate": 1.8973186298426715e-06,
1886
+ "loss": 0.04,
1887
+ "step": 12900
1888
+ },
1889
+ {
1890
+ "epoch": 8.23791348600509,
1891
+ "grad_norm": 1.2377244048034484,
1892
+ "learning_rate": 1.8327515176103339e-06,
1893
+ "loss": 0.0409,
1894
+ "step": 12950
1895
+ },
1896
+ {
1897
+ "epoch": 8.26972010178117,
1898
+ "grad_norm": 0.5811829212233038,
1899
+ "learning_rate": 1.7691911538043426e-06,
1900
+ "loss": 0.0414,
1901
+ "step": 13000
1902
+ },
1903
+ {
1904
+ "epoch": 8.301526717557252,
1905
+ "grad_norm": 0.404578030905123,
1906
+ "learning_rate": 1.7066453732905497e-06,
1907
+ "loss": 0.0406,
1908
+ "step": 13050
1909
+ },
1910
+ {
1911
+ "epoch": 8.333333333333334,
1912
+ "grad_norm": 0.5099055257542866,
1913
+ "learning_rate": 1.6451218858706374e-06,
1914
+ "loss": 0.0413,
1915
+ "step": 13100
1916
+ },
1917
+ {
1918
+ "epoch": 8.365139949109414,
1919
+ "grad_norm": 0.4999951785478943,
1920
+ "learning_rate": 1.5846282753317665e-06,
1921
+ "loss": 0.0403,
1922
+ "step": 13150
1923
+ },
1924
+ {
1925
+ "epoch": 8.396946564885496,
1926
+ "grad_norm": 0.48048243299669846,
1927
+ "learning_rate": 1.525171998511733e-06,
1928
+ "loss": 0.0404,
1929
+ "step": 13200
1930
+ },
1931
+ {
1932
+ "epoch": 8.428753180661577,
1933
+ "grad_norm": 0.5268405348490426,
1934
+ "learning_rate": 1.4667603843798106e-06,
1935
+ "loss": 0.0412,
1936
+ "step": 13250
1937
+ },
1938
+ {
1939
+ "epoch": 8.460559796437659,
1940
+ "grad_norm": 0.48606935124003653,
1941
+ "learning_rate": 1.40940063313331e-06,
1942
+ "loss": 0.0407,
1943
+ "step": 13300
1944
+ },
1945
+ {
1946
+ "epoch": 8.492366412213741,
1947
+ "grad_norm": 0.4586801501366044,
1948
+ "learning_rate": 1.3530998153100584e-06,
1949
+ "loss": 0.041,
1950
+ "step": 13350
1951
+ },
1952
+ {
1953
+ "epoch": 8.524173027989821,
1954
+ "grad_norm": 0.46212200000809905,
1955
+ "learning_rate": 1.2978648709168218e-06,
1956
+ "loss": 0.0415,
1957
+ "step": 13400
1958
+ },
1959
+ {
1960
+ "epoch": 8.555979643765903,
1961
+ "grad_norm": 0.5230101492785741,
1962
+ "learning_rate": 1.2437026085738413e-06,
1963
+ "loss": 0.0412,
1964
+ "step": 13450
1965
+ },
1966
+ {
1967
+ "epoch": 8.587786259541986,
1968
+ "grad_norm": 0.5010710891320053,
1969
+ "learning_rate": 1.190619704675564e-06,
1970
+ "loss": 0.0407,
1971
+ "step": 13500
1972
+ },
1973
+ {
1974
+ "epoch": 8.619592875318066,
1975
+ "grad_norm": 0.5337226775595767,
1976
+ "learning_rate": 1.1386227025676533e-06,
1977
+ "loss": 0.0411,
1978
+ "step": 13550
1979
+ },
1980
+ {
1981
+ "epoch": 8.651399491094148,
1982
+ "grad_norm": 0.49748450214540363,
1983
+ "learning_rate": 1.0877180117404262e-06,
1984
+ "loss": 0.041,
1985
+ "step": 13600
1986
+ },
1987
+ {
1988
+ "epoch": 8.683206106870228,
1989
+ "grad_norm": 0.5478966127927775,
1990
+ "learning_rate": 1.0379119070387678e-06,
1991
+ "loss": 0.0408,
1992
+ "step": 13650
1993
+ },
1994
+ {
1995
+ "epoch": 8.71501272264631,
1996
+ "grad_norm": 0.5724410891992745,
1997
+ "learning_rate": 9.892105278886633e-07,
1998
+ "loss": 0.0413,
1999
+ "step": 13700
2000
+ },
2001
+ {
2002
+ "epoch": 8.746819338422393,
2003
+ "grad_norm": 0.5129565444894096,
2004
+ "learning_rate": 9.416198775403995e-07,
2005
+ "loss": 0.0416,
2006
+ "step": 13750
2007
+ },
2008
+ {
2009
+ "epoch": 8.778625954198473,
2010
+ "grad_norm": 0.4919521234854214,
2011
+ "learning_rate": 8.951458223285747e-07,
2012
+ "loss": 0.041,
2013
+ "step": 13800
2014
+ },
2015
+ {
2016
+ "epoch": 8.810432569974555,
2017
+ "grad_norm": 0.5202619264425508,
2018
+ "learning_rate": 8.497940909489766e-07,
2019
+ "loss": 0.0409,
2020
+ "step": 13850
2021
+ },
2022
+ {
2023
+ "epoch": 8.842239185750635,
2024
+ "grad_norm": 0.5737719301526714,
2025
+ "learning_rate": 8.05570273752414e-07,
2026
+ "loss": 0.0409,
2027
+ "step": 13900
2028
+ },
2029
+ {
2030
+ "epoch": 8.874045801526718,
2031
+ "grad_norm": 0.5125697208888668,
2032
+ "learning_rate": 7.624798220556307e-07,
2033
+ "loss": 0.0416,
2034
+ "step": 13950
2035
+ },
2036
+ {
2037
+ "epoch": 8.9058524173028,
2038
+ "grad_norm": 0.4752912481647863,
2039
+ "learning_rate": 7.205280474693255e-07,
2040
+ "loss": 0.0408,
2041
+ "step": 14000
2042
+ },
2043
+ {
2044
+ "epoch": 8.93765903307888,
2045
+ "grad_norm": 0.46889034532949214,
2046
+ "learning_rate": 6.797201212434179e-07,
2047
+ "loss": 0.0414,
2048
+ "step": 14050
2049
+ },
2050
+ {
2051
+ "epoch": 8.969465648854962,
2052
+ "grad_norm": 0.5191849271721021,
2053
+ "learning_rate": 6.40061073629602e-07,
2054
+ "loss": 0.0407,
2055
+ "step": 14100
2056
+ },
2057
+ {
2058
+ "epoch": 9.0,
2059
+ "eval_loss": 3.1603267192840576,
2060
+ "eval_runtime": 41.6298,
2061
+ "eval_samples_per_second": 67.404,
2062
+ "eval_steps_per_second": 2.114,
2063
+ "step": 14148
2064
+ }
2065
+ ],
2066
+ "logging_steps": 50,
2067
+ "max_steps": 15720,
2068
+ "num_input_tokens_seen": 0,
2069
+ "num_train_epochs": 10,
2070
+ "save_steps": 500,
2071
+ "stateful_callbacks": {
2072
+ "TrainerControl": {
2073
+ "args": {
2074
+ "should_epoch_stop": false,
2075
+ "should_evaluate": false,
2076
+ "should_log": false,
2077
+ "should_save": true,
2078
+ "should_training_stop": false
2079
+ },
2080
+ "attributes": {}
2081
+ }
2082
+ },
2083
+ "total_flos": 1023988520189952.0,
2084
+ "train_batch_size": 4,
2085
+ "trial_name": null,
2086
+ "trial_params": null
2087
+ }
checkpoint-14148/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffe16de25abde3d2a7777095ce6881549bdaf81bd8ab5b319d9af5888345c635
3
+ size 7224
checkpoint-14148/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)