Training in progress, epoch 3, checkpoint
Browse files- checkpoint-4716/added_tokens.json +3 -0
- checkpoint-4716/config.json +37 -0
- checkpoint-4716/generation_config.json +13 -0
- checkpoint-4716/global_step4716/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-4716/global_step4716/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-4716/global_step4716/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-4716/global_step4716/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-4716/global_step4716/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-4716/global_step4716/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-4716/global_step4716/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-4716/global_step4716/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-4716/global_step4716/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-4716/global_step4716/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-4716/global_step4716/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-4716/global_step4716/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-4716/global_step4716/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- checkpoint-4716/global_step4716/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- checkpoint-4716/global_step4716/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- checkpoint-4716/global_step4716/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- checkpoint-4716/latest +1 -0
- checkpoint-4716/model-00001-of-00002.safetensors +3 -0
- checkpoint-4716/model-00002-of-00002.safetensors +3 -0
- checkpoint-4716/model.safetensors.index.json +451 -0
- checkpoint-4716/rng_state_0.pth +3 -0
- checkpoint-4716/rng_state_1.pth +3 -0
- checkpoint-4716/rng_state_2.pth +3 -0
- checkpoint-4716/rng_state_3.pth +3 -0
- checkpoint-4716/rng_state_4.pth +3 -0
- checkpoint-4716/rng_state_5.pth +3 -0
- checkpoint-4716/rng_state_6.pth +3 -0
- checkpoint-4716/rng_state_7.pth +3 -0
- checkpoint-4716/scheduler.pt +3 -0
- checkpoint-4716/special_tokens_map.json +33 -0
- checkpoint-4716/tokenizer.json +3 -0
- checkpoint-4716/tokenizer.model +3 -0
- checkpoint-4716/tokenizer_config.json +0 -0
- checkpoint-4716/trainer_state.json +723 -0
- checkpoint-4716/training_args.bin +3 -0
- checkpoint-4716/zero_to_fp32.py +760 -0
checkpoint-4716/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<image_soft_token>": 262144
|
3 |
+
}
|
checkpoint-4716/config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Gemma3ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attn_logit_softcapping": null,
|
8 |
+
"bos_token_id": 2,
|
9 |
+
"cache_implementation": "hybrid",
|
10 |
+
"eos_token_id": 1,
|
11 |
+
"final_logit_softcapping": null,
|
12 |
+
"head_dim": 256,
|
13 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
14 |
+
"hidden_size": 2560,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 10240,
|
17 |
+
"max_position_embeddings": 131072,
|
18 |
+
"model_type": "gemma3_text",
|
19 |
+
"num_attention_heads": 8,
|
20 |
+
"num_hidden_layers": 34,
|
21 |
+
"num_key_value_heads": 4,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"query_pre_attn_scalar": 256,
|
24 |
+
"rms_norm_eps": 1e-06,
|
25 |
+
"rope_local_base_freq": 10000.0,
|
26 |
+
"rope_scaling": {
|
27 |
+
"factor": 8.0,
|
28 |
+
"rope_type": "linear"
|
29 |
+
},
|
30 |
+
"rope_theta": 1000000.0,
|
31 |
+
"sliding_window": 1024,
|
32 |
+
"sliding_window_pattern": 6,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.51.0.dev0",
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 262208
|
37 |
+
}
|
checkpoint-4716/generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 2,
|
3 |
+
"cache_implementation": "hybrid",
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": [
|
6 |
+
1,
|
7 |
+
106
|
8 |
+
],
|
9 |
+
"pad_token_id": 0,
|
10 |
+
"top_k": 64,
|
11 |
+
"top_p": 0.95,
|
12 |
+
"transformers_version": "4.51.0.dev0"
|
13 |
+
}
|
checkpoint-4716/global_step4716/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67050972325d2070a6e579b979ce58f8e81813f6a6a855f87b25e26a98a4787f
|
3 |
+
size 5820399644
|
checkpoint-4716/global_step4716/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f8d06da3feba9ca101bca56f77fdf75e03d45a0587dff63f6139db28fd7c3f3
|
3 |
+
size 5820399644
|
checkpoint-4716/global_step4716/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e300b78495c692edf30089d02fce4700f989f21c5f903fdbee05439c1efcf1fb
|
3 |
+
size 5820399644
|
checkpoint-4716/global_step4716/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1bc99798e83e8e1396b76aaed6ceb262338e7eedef838f8f2dcb2396bd0e8a8
|
3 |
+
size 5820399644
|
checkpoint-4716/global_step4716/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6cca59cba2e7753485a19e2b02d236f8c451d853da3c61bee084aaeaaa75d2a
|
3 |
+
size 5820399644
|
checkpoint-4716/global_step4716/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b04eb682b810d0d84b6cdbb8657a8d461cc15a5d27ac4bf79e1d66805d6019a
|
3 |
+
size 5820399644
|
checkpoint-4716/global_step4716/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6a426f42b1bae290b6a24c8b83f4734b02992efc7f07900169b6a58edfa69e8
|
3 |
+
size 5820399644
|
checkpoint-4716/global_step4716/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90ab969aa95c048e02d0a7c08f3516737386321b45f1a573a5818f0b5cd197d0
|
3 |
+
size 5820399644
|
checkpoint-4716/global_step4716/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c913b46d2d0c0ea907390be3c1d3c6ed9a403984df97873626518f27f4ec6945
|
3 |
+
size 225786
|
checkpoint-4716/global_step4716/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bfdb448ad3ddfe0918b200848b153bdc574b2e4eb022e700d8fdb9ff420ef3a
|
3 |
+
size 225722
|
checkpoint-4716/global_step4716/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63c7b1d0ba325438c5098307f170616c6b85a99b5bfa789e75301d8b083f6010
|
3 |
+
size 225722
|
checkpoint-4716/global_step4716/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:405c19953dcfdc0fa2b94eb73a36c03bbd04d9308390388f529dd71094c769fe
|
3 |
+
size 225722
|
checkpoint-4716/global_step4716/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9db6a7897603ce3c6fff84df63f040b153b1b54bc20235a728137ad99dfc97d6
|
3 |
+
size 225722
|
checkpoint-4716/global_step4716/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1964347fc52701fe009086db13301255569353d5d9ba122122477d9d692537c8
|
3 |
+
size 225722
|
checkpoint-4716/global_step4716/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9613566a0282a9de02be947e1d8d4f63488f1e2a03956c52a1082dad2d0883a7
|
3 |
+
size 225722
|
checkpoint-4716/global_step4716/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae832093aef13cd5406a9b4aa9276169afbae188dbbd926c66f135e012c3a7df
|
3 |
+
size 225722
|
checkpoint-4716/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step4716
|
checkpoint-4716/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdff99a50de42a3586dabc0b4953c4d3344a92a6a629a5ba28c1133b7d735aff
|
3 |
+
size 4960531344
|
checkpoint-4716/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:049198cef09985f7d5a92df60903f0d5a8a9a2719a4996e7805a1f4a8dac5f97
|
3 |
+
size 2800046672
|
checkpoint-4716/model.safetensors.index.json
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 7760526336
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.15.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.16.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.16.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.17.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.17.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.18.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.18.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
153 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
154 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
179 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
181 |
+
"model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
182 |
+
"model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
183 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
185 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
186 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
187 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
198 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
205 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
208 |
+
"model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
210 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
217 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
219 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
220 |
+
"model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
221 |
+
"model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
222 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
229 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
232 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
233 |
+
"model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
243 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
244 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
245 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
246 |
+
"model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
247 |
+
"model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
253 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
256 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
257 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
258 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
259 |
+
"model.layers.26.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"model.layers.26.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
266 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
267 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
268 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
269 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
270 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
271 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"model.layers.27.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.27.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
285 |
+
"model.layers.28.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
286 |
+
"model.layers.28.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
287 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
288 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
289 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
290 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
291 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
292 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
293 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
294 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
295 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.29.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.29.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
307 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
308 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
309 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
310 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
311 |
+
"model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
312 |
+
"model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
313 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
314 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
315 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
316 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
317 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
318 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
319 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.30.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.30.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.31.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.31.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.32.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.32.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.33.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.33.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
369 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
370 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
371 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
441 |
+
"model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
442 |
+
"model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
443 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
444 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
445 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
446 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
447 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
448 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
449 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
450 |
+
}
|
451 |
+
}
|
checkpoint-4716/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0628a9017696045a3a29e9eaffc71e9262d855716e773c0c3be760a1fe85bc8
|
3 |
+
size 15984
|
checkpoint-4716/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df342004a4d8e3626bf2a9f689fde7c8bfd6d995e14931f5496eda1f456cb6f2
|
3 |
+
size 15984
|
checkpoint-4716/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f02096eb4e8850b91490e80e4a042e2e60f71bd2abc6a269d62c271649cb77d2
|
3 |
+
size 15984
|
checkpoint-4716/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:326c778d3d0e7e3d5665fa0a9ecd92986609c430da08b41611d6c05dc19815a8
|
3 |
+
size 15984
|
checkpoint-4716/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d978dcb0c34e022ee6750e9d86814b8c82e4965d7e07662f35f06eeac12938f3
|
3 |
+
size 15984
|
checkpoint-4716/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01e83399aed1d9d173c3e07b2efa8530c956b62b2b68394c2ed0d43bd8bba9d1
|
3 |
+
size 15984
|
checkpoint-4716/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:606ab3ca92e3d20c327c69fdcce7f7e39bec2f2c3538b036088b255f917e3ba4
|
3 |
+
size 15984
|
checkpoint-4716/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1276a987dd22c9093fec58921ba19f340a28f18bff635cc01324e09a3c37ac3a
|
3 |
+
size 15984
|
checkpoint-4716/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:947d8bcd55df10a276109d4611d722d243d11b67b40661ac10828a4b1c8f9f97
|
3 |
+
size 1064
|
checkpoint-4716/special_tokens_map.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"boi_token": "<start_of_image>",
|
3 |
+
"bos_token": {
|
4 |
+
"content": "<bos>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
"eoi_token": "<end_of_image>",
|
11 |
+
"eos_token": {
|
12 |
+
"content": "<eos>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"image_token": "<image_soft_token>",
|
19 |
+
"pad_token": {
|
20 |
+
"content": "<pad>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false
|
25 |
+
},
|
26 |
+
"unk_token": {
|
27 |
+
"content": "<unk>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": false,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
checkpoint-4716/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
|
3 |
+
size 33384568
|
checkpoint-4716/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
|
3 |
+
size 4689074
|
checkpoint-4716/tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-4716/trainer_state.json
ADDED
@@ -0,0 +1,723 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": 3144,
|
3 |
+
"best_metric": 1.1658307313919067,
|
4 |
+
"best_model_checkpoint": "models/gemma-3-4b-sft-full/checkpoint-3144",
|
5 |
+
"epoch": 3.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 4716,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0006361323155216285,
|
14 |
+
"grad_norm": 31.319606519809206,
|
15 |
+
"learning_rate": 1.2722646310432571e-08,
|
16 |
+
"loss": 2.0248,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.031806615776081425,
|
21 |
+
"grad_norm": 13.2120799093862,
|
22 |
+
"learning_rate": 6.361323155216286e-07,
|
23 |
+
"loss": 1.9103,
|
24 |
+
"step": 50
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.06361323155216285,
|
28 |
+
"grad_norm": 2.8305292907887694,
|
29 |
+
"learning_rate": 1.2722646310432571e-06,
|
30 |
+
"loss": 1.4434,
|
31 |
+
"step": 100
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.09541984732824428,
|
35 |
+
"grad_norm": 2.3110831279704738,
|
36 |
+
"learning_rate": 1.908396946564886e-06,
|
37 |
+
"loss": 1.3196,
|
38 |
+
"step": 150
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.1272264631043257,
|
42 |
+
"grad_norm": 2.3096762225567056,
|
43 |
+
"learning_rate": 2.5445292620865143e-06,
|
44 |
+
"loss": 1.3039,
|
45 |
+
"step": 200
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.15903307888040713,
|
49 |
+
"grad_norm": 2.2782572106396306,
|
50 |
+
"learning_rate": 3.1806615776081427e-06,
|
51 |
+
"loss": 1.2618,
|
52 |
+
"step": 250
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.19083969465648856,
|
56 |
+
"grad_norm": 2.2420875359580132,
|
57 |
+
"learning_rate": 3.816793893129772e-06,
|
58 |
+
"loss": 1.2501,
|
59 |
+
"step": 300
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.22264631043256997,
|
63 |
+
"grad_norm": 2.0330974831105215,
|
64 |
+
"learning_rate": 4.4529262086514e-06,
|
65 |
+
"loss": 1.2541,
|
66 |
+
"step": 350
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.2544529262086514,
|
70 |
+
"grad_norm": 2.1026569258639043,
|
71 |
+
"learning_rate": 5.0890585241730285e-06,
|
72 |
+
"loss": 1.2278,
|
73 |
+
"step": 400
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.2862595419847328,
|
77 |
+
"grad_norm": 2.0803892623652196,
|
78 |
+
"learning_rate": 5.725190839694656e-06,
|
79 |
+
"loss": 1.2173,
|
80 |
+
"step": 450
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.31806615776081426,
|
84 |
+
"grad_norm": 2.5887368846264684,
|
85 |
+
"learning_rate": 6.3613231552162854e-06,
|
86 |
+
"loss": 1.2241,
|
87 |
+
"step": 500
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.34987277353689566,
|
91 |
+
"grad_norm": 1.8616362535769346,
|
92 |
+
"learning_rate": 6.997455470737914e-06,
|
93 |
+
"loss": 1.1954,
|
94 |
+
"step": 550
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.3816793893129771,
|
98 |
+
"grad_norm": 2.2198054581544153,
|
99 |
+
"learning_rate": 7.633587786259543e-06,
|
100 |
+
"loss": 1.2207,
|
101 |
+
"step": 600
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.41348600508905853,
|
105 |
+
"grad_norm": 1.9458297082843083,
|
106 |
+
"learning_rate": 8.26972010178117e-06,
|
107 |
+
"loss": 1.2104,
|
108 |
+
"step": 650
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.44529262086513993,
|
112 |
+
"grad_norm": 1.754441697698081,
|
113 |
+
"learning_rate": 8.9058524173028e-06,
|
114 |
+
"loss": 1.1954,
|
115 |
+
"step": 700
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.4770992366412214,
|
119 |
+
"grad_norm": 1.9516730885650273,
|
120 |
+
"learning_rate": 9.54198473282443e-06,
|
121 |
+
"loss": 1.1962,
|
122 |
+
"step": 750
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.5089058524173028,
|
126 |
+
"grad_norm": 1.8788578410476755,
|
127 |
+
"learning_rate": 1.0178117048346057e-05,
|
128 |
+
"loss": 1.1955,
|
129 |
+
"step": 800
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.5407124681933843,
|
133 |
+
"grad_norm": 1.7660250423975214,
|
134 |
+
"learning_rate": 1.0814249363867686e-05,
|
135 |
+
"loss": 1.2029,
|
136 |
+
"step": 850
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.5725190839694656,
|
140 |
+
"grad_norm": 1.7319081555721738,
|
141 |
+
"learning_rate": 1.1450381679389312e-05,
|
142 |
+
"loss": 1.201,
|
143 |
+
"step": 900
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.6043256997455471,
|
147 |
+
"grad_norm": 1.7433405435098388,
|
148 |
+
"learning_rate": 1.2086513994910942e-05,
|
149 |
+
"loss": 1.1945,
|
150 |
+
"step": 950
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.6361323155216285,
|
154 |
+
"grad_norm": 1.6584922549922605,
|
155 |
+
"learning_rate": 1.2722646310432571e-05,
|
156 |
+
"loss": 1.188,
|
157 |
+
"step": 1000
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.6679389312977099,
|
161 |
+
"grad_norm": 1.694934894298546,
|
162 |
+
"learning_rate": 1.3358778625954198e-05,
|
163 |
+
"loss": 1.1853,
|
164 |
+
"step": 1050
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.6997455470737913,
|
168 |
+
"grad_norm": 1.8972752727827624,
|
169 |
+
"learning_rate": 1.3994910941475828e-05,
|
170 |
+
"loss": 1.1796,
|
171 |
+
"step": 1100
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.7315521628498728,
|
175 |
+
"grad_norm": 1.7794214888108801,
|
176 |
+
"learning_rate": 1.4631043256997457e-05,
|
177 |
+
"loss": 1.1879,
|
178 |
+
"step": 1150
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.7633587786259542,
|
182 |
+
"grad_norm": 1.7080167758006621,
|
183 |
+
"learning_rate": 1.5267175572519086e-05,
|
184 |
+
"loss": 1.2033,
|
185 |
+
"step": 1200
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.7951653944020356,
|
189 |
+
"grad_norm": 1.6732561680746716,
|
190 |
+
"learning_rate": 1.5903307888040712e-05,
|
191 |
+
"loss": 1.1729,
|
192 |
+
"step": 1250
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.8269720101781171,
|
196 |
+
"grad_norm": 2.0115920286242472,
|
197 |
+
"learning_rate": 1.653944020356234e-05,
|
198 |
+
"loss": 1.1798,
|
199 |
+
"step": 1300
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.8587786259541985,
|
203 |
+
"grad_norm": 1.5883913583214553,
|
204 |
+
"learning_rate": 1.717557251908397e-05,
|
205 |
+
"loss": 1.1761,
|
206 |
+
"step": 1350
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.8905852417302799,
|
210 |
+
"grad_norm": 1.5615231326127277,
|
211 |
+
"learning_rate": 1.78117048346056e-05,
|
212 |
+
"loss": 1.1807,
|
213 |
+
"step": 1400
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.9223918575063613,
|
217 |
+
"grad_norm": 1.6052692336601109,
|
218 |
+
"learning_rate": 1.844783715012723e-05,
|
219 |
+
"loss": 1.1872,
|
220 |
+
"step": 1450
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.9541984732824428,
|
224 |
+
"grad_norm": 1.6293394603925617,
|
225 |
+
"learning_rate": 1.908396946564886e-05,
|
226 |
+
"loss": 1.1821,
|
227 |
+
"step": 1500
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.9860050890585241,
|
231 |
+
"grad_norm": 1.9511097309507746,
|
232 |
+
"learning_rate": 1.9720101781170485e-05,
|
233 |
+
"loss": 1.193,
|
234 |
+
"step": 1550
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 1.0,
|
238 |
+
"eval_loss": 1.1915197372436523,
|
239 |
+
"eval_runtime": 50.604,
|
240 |
+
"eval_samples_per_second": 55.45,
|
241 |
+
"eval_steps_per_second": 1.739,
|
242 |
+
"step": 1572
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 1.0178117048346056,
|
246 |
+
"grad_norm": 1.699246916566911,
|
247 |
+
"learning_rate": 1.9999806716709255e-05,
|
248 |
+
"loss": 1.0668,
|
249 |
+
"step": 1600
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 1.049618320610687,
|
253 |
+
"grad_norm": 1.6215378174021484,
|
254 |
+
"learning_rate": 1.999850011488216e-05,
|
255 |
+
"loss": 0.9829,
|
256 |
+
"step": 1650
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 1.0814249363867685,
|
260 |
+
"grad_norm": 1.7868804206457551,
|
261 |
+
"learning_rate": 1.9995961032584046e-05,
|
262 |
+
"loss": 0.9782,
|
263 |
+
"step": 1700
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 1.11323155216285,
|
267 |
+
"grad_norm": 1.824863693326858,
|
268 |
+
"learning_rate": 1.9992189782798795e-05,
|
269 |
+
"loss": 0.9649,
|
270 |
+
"step": 1750
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 1.1450381679389312,
|
274 |
+
"grad_norm": 1.9389315988555975,
|
275 |
+
"learning_rate": 1.99871868303953e-05,
|
276 |
+
"loss": 0.9859,
|
277 |
+
"step": 1800
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 1.1768447837150127,
|
281 |
+
"grad_norm": 1.8613552819265144,
|
282 |
+
"learning_rate": 1.9980952792070175e-05,
|
283 |
+
"loss": 0.97,
|
284 |
+
"step": 1850
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 1.2086513994910941,
|
288 |
+
"grad_norm": 1.6290767219311002,
|
289 |
+
"learning_rate": 1.9973488436271728e-05,
|
290 |
+
"loss": 0.9898,
|
291 |
+
"step": 1900
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 1.2404580152671756,
|
295 |
+
"grad_norm": 1.9280005053128177,
|
296 |
+
"learning_rate": 1.996479468310524e-05,
|
297 |
+
"loss": 0.977,
|
298 |
+
"step": 1950
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 1.272264631043257,
|
302 |
+
"grad_norm": 1.8021715712875992,
|
303 |
+
"learning_rate": 1.9954872604219543e-05,
|
304 |
+
"loss": 0.9778,
|
305 |
+
"step": 2000
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 1.3040712468193385,
|
309 |
+
"grad_norm": 1.778983300178611,
|
310 |
+
"learning_rate": 1.994372342267493e-05,
|
311 |
+
"loss": 0.9754,
|
312 |
+
"step": 2050
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 1.33587786259542,
|
316 |
+
"grad_norm": 1.6139758020504216,
|
317 |
+
"learning_rate": 1.993134851279238e-05,
|
318 |
+
"loss": 0.9768,
|
319 |
+
"step": 2100
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 1.3676844783715012,
|
323 |
+
"grad_norm": 1.6159993769878525,
|
324 |
+
"learning_rate": 1.991774939998417e-05,
|
325 |
+
"loss": 0.977,
|
326 |
+
"step": 2150
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 1.3994910941475827,
|
330 |
+
"grad_norm": 1.7346584119107982,
|
331 |
+
"learning_rate": 1.9902927760565824e-05,
|
332 |
+
"loss": 1.0021,
|
333 |
+
"step": 2200
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 1.4312977099236641,
|
337 |
+
"grad_norm": 1.6348257679838059,
|
338 |
+
"learning_rate": 1.988688542154948e-05,
|
339 |
+
"loss": 0.9911,
|
340 |
+
"step": 2250
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 1.4631043256997456,
|
344 |
+
"grad_norm": 2.005161271222442,
|
345 |
+
"learning_rate": 1.98696243604187e-05,
|
346 |
+
"loss": 0.98,
|
347 |
+
"step": 2300
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 1.494910941475827,
|
351 |
+
"grad_norm": 1.6947935478149847,
|
352 |
+
"learning_rate": 1.9851146704884684e-05,
|
353 |
+
"loss": 0.9933,
|
354 |
+
"step": 2350
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 1.5267175572519083,
|
358 |
+
"grad_norm": 1.559288613818951,
|
359 |
+
"learning_rate": 1.9831454732624023e-05,
|
360 |
+
"loss": 0.9812,
|
361 |
+
"step": 2400
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 1.55852417302799,
|
365 |
+
"grad_norm": 1.6147458399643977,
|
366 |
+
"learning_rate": 1.9810550870997914e-05,
|
367 |
+
"loss": 0.9829,
|
368 |
+
"step": 2450
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 1.5903307888040712,
|
372 |
+
"grad_norm": 1.7200525728774254,
|
373 |
+
"learning_rate": 1.9788437696752965e-05,
|
374 |
+
"loss": 0.9827,
|
375 |
+
"step": 2500
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 1.6221374045801527,
|
379 |
+
"grad_norm": 1.5679464105011003,
|
380 |
+
"learning_rate": 1.9765117935703556e-05,
|
381 |
+
"loss": 0.9918,
|
382 |
+
"step": 2550
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 1.6539440203562341,
|
386 |
+
"grad_norm": 1.5684761038610553,
|
387 |
+
"learning_rate": 1.9740594462395844e-05,
|
388 |
+
"loss": 1.0035,
|
389 |
+
"step": 2600
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 1.6857506361323156,
|
393 |
+
"grad_norm": 1.6525710526384763,
|
394 |
+
"learning_rate": 1.9714870299753425e-05,
|
395 |
+
"loss": 0.9757,
|
396 |
+
"step": 2650
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 1.717557251908397,
|
400 |
+
"grad_norm": 1.61635439544328,
|
401 |
+
"learning_rate": 1.9687948618704713e-05,
|
402 |
+
"loss": 0.9878,
|
403 |
+
"step": 2700
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 1.7493638676844783,
|
407 |
+
"grad_norm": 1.552931766301823,
|
408 |
+
"learning_rate": 1.9659832737792065e-05,
|
409 |
+
"loss": 0.9926,
|
410 |
+
"step": 2750
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 1.78117048346056,
|
414 |
+
"grad_norm": 1.7462958660917196,
|
415 |
+
"learning_rate": 1.963052612276272e-05,
|
416 |
+
"loss": 0.9923,
|
417 |
+
"step": 2800
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 1.8129770992366412,
|
421 |
+
"grad_norm": 1.541467107392074,
|
422 |
+
"learning_rate": 1.9600032386141578e-05,
|
423 |
+
"loss": 0.9883,
|
424 |
+
"step": 2850
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 1.8447837150127226,
|
428 |
+
"grad_norm": 1.60142808575721,
|
429 |
+
"learning_rate": 1.9568355286785916e-05,
|
430 |
+
"loss": 0.9848,
|
431 |
+
"step": 2900
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 1.876590330788804,
|
435 |
+
"grad_norm": 1.628212808465854,
|
436 |
+
"learning_rate": 1.9535498729422034e-05,
|
437 |
+
"loss": 0.981,
|
438 |
+
"step": 2950
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 1.9083969465648853,
|
442 |
+
"grad_norm": 1.589079219019998,
|
443 |
+
"learning_rate": 1.950146676416393e-05,
|
444 |
+
"loss": 0.9938,
|
445 |
+
"step": 3000
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 1.940203562340967,
|
449 |
+
"grad_norm": 1.5927647305457868,
|
450 |
+
"learning_rate": 1.9466263586014062e-05,
|
451 |
+
"loss": 0.9831,
|
452 |
+
"step": 3050
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 1.9720101781170483,
|
456 |
+
"grad_norm": 1.6181088935396841,
|
457 |
+
"learning_rate": 1.9429893534346248e-05,
|
458 |
+
"loss": 0.9738,
|
459 |
+
"step": 3100
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 2.0,
|
463 |
+
"eval_loss": 1.1658307313919067,
|
464 |
+
"eval_runtime": 57.664,
|
465 |
+
"eval_samples_per_second": 48.661,
|
466 |
+
"eval_steps_per_second": 1.526,
|
467 |
+
"step": 3144
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 2.00381679389313,
|
471 |
+
"grad_norm": 2.8157430444252833,
|
472 |
+
"learning_rate": 1.9392361092370756e-05,
|
473 |
+
"loss": 0.9372,
|
474 |
+
"step": 3150
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 2.035623409669211,
|
478 |
+
"grad_norm": 1.8202205896718766,
|
479 |
+
"learning_rate": 1.9353670886581683e-05,
|
480 |
+
"loss": 0.6118,
|
481 |
+
"step": 3200
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 2.0674300254452924,
|
485 |
+
"grad_norm": 1.8024719083066718,
|
486 |
+
"learning_rate": 1.9313827686186664e-05,
|
487 |
+
"loss": 0.5956,
|
488 |
+
"step": 3250
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 2.099236641221374,
|
492 |
+
"grad_norm": 1.8065831151097012,
|
493 |
+
"learning_rate": 1.927283640251898e-05,
|
494 |
+
"loss": 0.615,
|
495 |
+
"step": 3300
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 2.1310432569974553,
|
499 |
+
"grad_norm": 1.93182684100521,
|
500 |
+
"learning_rate": 1.923070208843216e-05,
|
501 |
+
"loss": 0.6079,
|
502 |
+
"step": 3350
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"epoch": 2.162849872773537,
|
506 |
+
"grad_norm": 1.8738788734317153,
|
507 |
+
"learning_rate": 1.9187429937677136e-05,
|
508 |
+
"loss": 0.607,
|
509 |
+
"step": 3400
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 2.1946564885496183,
|
513 |
+
"grad_norm": 1.8040300513160983,
|
514 |
+
"learning_rate": 1.9143025284262022e-05,
|
515 |
+
"loss": 0.6085,
|
516 |
+
"step": 3450
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"epoch": 2.2264631043257,
|
520 |
+
"grad_norm": 1.8986773569695647,
|
521 |
+
"learning_rate": 1.909749360179461e-05,
|
522 |
+
"loss": 0.6145,
|
523 |
+
"step": 3500
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"epoch": 2.258269720101781,
|
527 |
+
"grad_norm": 1.9163165829127622,
|
528 |
+
"learning_rate": 1.9050840502807665e-05,
|
529 |
+
"loss": 0.6169,
|
530 |
+
"step": 3550
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 2.2900763358778624,
|
534 |
+
"grad_norm": 2.0342511222836657,
|
535 |
+
"learning_rate": 1.9003071738067073e-05,
|
536 |
+
"loss": 0.6181,
|
537 |
+
"step": 3600
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 2.321882951653944,
|
541 |
+
"grad_norm": 1.9022311954341746,
|
542 |
+
"learning_rate": 1.895419319586298e-05,
|
543 |
+
"loss": 0.6322,
|
544 |
+
"step": 3650
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 2.3536895674300253,
|
548 |
+
"grad_norm": 1.947735727576319,
|
549 |
+
"learning_rate": 1.890421090128395e-05,
|
550 |
+
"loss": 0.6261,
|
551 |
+
"step": 3700
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 2.385496183206107,
|
555 |
+
"grad_norm": 1.8908602175645888,
|
556 |
+
"learning_rate": 1.8853131015474278e-05,
|
557 |
+
"loss": 0.6241,
|
558 |
+
"step": 3750
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 2.4173027989821882,
|
562 |
+
"grad_norm": 1.8428847331642595,
|
563 |
+
"learning_rate": 1.8800959834874534e-05,
|
564 |
+
"loss": 0.6247,
|
565 |
+
"step": 3800
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 2.4491094147582695,
|
569 |
+
"grad_norm": 1.9386784496016072,
|
570 |
+
"learning_rate": 1.8747703790445412e-05,
|
571 |
+
"loss": 0.6369,
|
572 |
+
"step": 3850
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 2.480916030534351,
|
576 |
+
"grad_norm": 1.8110474855626102,
|
577 |
+
"learning_rate": 1.8693369446875008e-05,
|
578 |
+
"loss": 0.6352,
|
579 |
+
"step": 3900
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 2.5127226463104324,
|
583 |
+
"grad_norm": 1.8744360271519491,
|
584 |
+
"learning_rate": 1.8637963501769625e-05,
|
585 |
+
"loss": 0.6402,
|
586 |
+
"step": 3950
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 2.544529262086514,
|
590 |
+
"grad_norm": 1.858724398900357,
|
591 |
+
"learning_rate": 1.858149278482817e-05,
|
592 |
+
"loss": 0.6459,
|
593 |
+
"step": 4000
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 2.5763358778625953,
|
597 |
+
"grad_norm": 1.8627524401678055,
|
598 |
+
"learning_rate": 1.8523964257000288e-05,
|
599 |
+
"loss": 0.6276,
|
600 |
+
"step": 4050
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 2.608142493638677,
|
604 |
+
"grad_norm": 1.9220180062265788,
|
605 |
+
"learning_rate": 1.8465385009628308e-05,
|
606 |
+
"loss": 0.6481,
|
607 |
+
"step": 4100
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 2.6399491094147582,
|
611 |
+
"grad_norm": 1.9319620445548449,
|
612 |
+
"learning_rate": 1.8405762263573108e-05,
|
613 |
+
"loss": 0.6344,
|
614 |
+
"step": 4150
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 2.67175572519084,
|
618 |
+
"grad_norm": 1.8442743167506148,
|
619 |
+
"learning_rate": 1.834510336832405e-05,
|
620 |
+
"loss": 0.6418,
|
621 |
+
"step": 4200
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 2.703562340966921,
|
625 |
+
"grad_norm": 1.8919128966016239,
|
626 |
+
"learning_rate": 1.8283415801093007e-05,
|
627 |
+
"loss": 0.6455,
|
628 |
+
"step": 4250
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"epoch": 2.7353689567430024,
|
632 |
+
"grad_norm": 1.79572731114352,
|
633 |
+
"learning_rate": 1.8220707165892682e-05,
|
634 |
+
"loss": 0.6474,
|
635 |
+
"step": 4300
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 2.767175572519084,
|
639 |
+
"grad_norm": 1.8916208552532916,
|
640 |
+
"learning_rate": 1.815698519259929e-05,
|
641 |
+
"loss": 0.6479,
|
642 |
+
"step": 4350
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 2.7989821882951653,
|
646 |
+
"grad_norm": 1.8754600469553322,
|
647 |
+
"learning_rate": 1.8092257735999734e-05,
|
648 |
+
"loss": 0.6549,
|
649 |
+
"step": 4400
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 2.830788804071247,
|
653 |
+
"grad_norm": 1.8972086051601613,
|
654 |
+
"learning_rate": 1.8026532774823343e-05,
|
655 |
+
"loss": 0.6397,
|
656 |
+
"step": 4450
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 2.8625954198473282,
|
660 |
+
"grad_norm": 1.8335920924146587,
|
661 |
+
"learning_rate": 1.7959818410758395e-05,
|
662 |
+
"loss": 0.6379,
|
663 |
+
"step": 4500
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 2.8944020356234095,
|
667 |
+
"grad_norm": 2.010899629666033,
|
668 |
+
"learning_rate": 1.789212286745342e-05,
|
669 |
+
"loss": 0.645,
|
670 |
+
"step": 4550
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 2.926208651399491,
|
674 |
+
"grad_norm": 1.854046640562392,
|
675 |
+
"learning_rate": 1.7823454489503526e-05,
|
676 |
+
"loss": 0.6491,
|
677 |
+
"step": 4600
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"epoch": 2.9580152671755724,
|
681 |
+
"grad_norm": 1.9582134927711392,
|
682 |
+
"learning_rate": 1.775382174142177e-05,
|
683 |
+
"loss": 0.6542,
|
684 |
+
"step": 4650
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 2.989821882951654,
|
688 |
+
"grad_norm": 1.851650468210065,
|
689 |
+
"learning_rate": 1.768323320659578e-05,
|
690 |
+
"loss": 0.6542,
|
691 |
+
"step": 4700
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 3.0,
|
695 |
+
"eval_loss": 1.25302255153656,
|
696 |
+
"eval_runtime": 57.2963,
|
697 |
+
"eval_samples_per_second": 48.973,
|
698 |
+
"eval_steps_per_second": 1.536,
|
699 |
+
"step": 4716
|
700 |
+
}
|
701 |
+
],
|
702 |
+
"logging_steps": 50,
|
703 |
+
"max_steps": 15720,
|
704 |
+
"num_input_tokens_seen": 0,
|
705 |
+
"num_train_epochs": 10,
|
706 |
+
"save_steps": 500,
|
707 |
+
"stateful_callbacks": {
|
708 |
+
"TrainerControl": {
|
709 |
+
"args": {
|
710 |
+
"should_epoch_stop": false,
|
711 |
+
"should_evaluate": false,
|
712 |
+
"should_log": false,
|
713 |
+
"should_save": true,
|
714 |
+
"should_training_stop": false
|
715 |
+
},
|
716 |
+
"attributes": {}
|
717 |
+
}
|
718 |
+
},
|
719 |
+
"total_flos": 341329506729984.0,
|
720 |
+
"train_batch_size": 4,
|
721 |
+
"trial_name": null,
|
722 |
+
"trial_params": null
|
723 |
+
}
|
checkpoint-4716/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffe16de25abde3d2a7777095ce6881549bdaf81bd8ab5b319d9af5888345c635
|
3 |
+
size 7224
|
checkpoint-4716/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|