Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 272.58 +/- 25.88
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a18654adc60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a18654add00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a18654adda0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a18654ade40>", "_build": "<function ActorCriticPolicy._build at 0x7a18654adee0>", "forward": "<function ActorCriticPolicy.forward at 0x7a18654adf80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a18654ae020>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a18654ae0c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a18654ae160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a18654ae200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a18654ae2a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a18654ae340>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a18661195c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 901120, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1744965933772021289, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAAAFAS9rlGqussVF7gmjCizA1L0OfKqLDcAAIA/AACAP2ZGPDvaEDU+w5GPPpfijb7jRRs+jhDHuwAAAAAAAAAABkZwPhKkDz/qa/29ZwjvvvebnT7WISq+AAAAAAAAAACzUT89N7PBP3A7Yj5+n0y9pIA9PGVpcDwAAAAAAAAAANMfM76nDw4/hXPwPUZRqL7OO+O9uNE9PgAAAAAAAAAA0OyFvuZiZz+4I26+YoUHvw93wL7fYyA9AAAAAAAAAADNsam9FVqhPwDO+76o2gK/J3uvvYmGhb4AAAAAAAAAALNgQb0DBUi8E0gFPLcUirxT2Xq9ih8dvgAAgD8AAIA/JrLEvUQPFj72ZBw9HKRJvjz5gb1qFmq9AAAAAAAAAACadaO99hw4uu1FnDX10qMwh8lzugvasbQAAIA/AACAP2aozT1OKI0+QqSzvrthgb6kqxO+ANISvAAAAAAAAAAAZm4DPLj2uLmBRT601U2cLkVDWLvndpAzAACAPwAAgD8ztMC87VKpPgXvVb1hCZa+hH6AvAYZDb0AAAAAAAAAAAb6FL4mn74/+iv/vmGQYL4Nvw++Frp6vgAAAAAAAAAA4Oa3vilcKT9yZqo9StvwvvN/jb7dN1Y+AAAAAAAAAAAAQI06SGeYul7dNLOdWD6wksm2Oj3QxjMAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.09887999999999997, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHM85FLFn7KMAWyUTQQBjAF0lEdAkNBYjB2wFHV9lChoBkdARpeo5xR2sGgHS7poCEdAkNFlhXr+pHV9lChoBkdAcI1uvllsg2gHS+FoCEdAkNHjiXIEKXV9lChoBkdAcAXXmNipemgHS/poCEdAkNImDxsl9nV9lChoBkdAcDsLofSx7mgHS/RoCEdAkNI/SpiqhnV9lChoBkdAciLxiobXH2gHS/xoCEdAkNKuYQarFXV9lChoBkdAcBNKL876pGgHS/1oCEdAkNLAfuCwr3V9lChoBkdAcF+DYAbQ1WgHTRoBaAhHQJDTfNQj2SN1fZQoaAZHQHBO7+98JD5oB0vlaAhHQJDTmmsNlRR1fZQoaAZHQHFcMYl6Z6VoB00BAWgIR0CQ06tsN2C/dX2UKGgGR0BwUI6QvHtGaAdNGQFoCEdAkNQ8BhhH9XV9lChoBkdAb3Q2BJ7LMmgHS+FoCEdAkNSJwsGxEHV9lChoBkdAcLjvYvnKXGgHS/JoCEdAkNTs/lhgE3V9lChoBkdAc1lixVyWA2gHS+RoCEdAkNVE6T4cm3V9lChoBkdAcHvUhV2ic2gHS/5oCEdAkNXWcnVoYnV9lChoBkdAcXV75Ec81WgHS+VoCEdAkNYmSZBsynV9lChoBkdAc3E7DVH4GmgHTUABaAhHQJDXSZtvXK91fZQoaAZHQHK14Lw4KhNoB0vQaAhHQJDXSQV9F4N1fZQoaAZHQG+7lPi1iONoB0vgaAhHQJDZvaK1og51fZQoaAZHQHFP2Ya5wwVoB0v8aAhHQJDbMslLOA11fZQoaAZHQHD+MawUxmFoB00PAWgIR0CQ249tMwlCdX2UKGgGR0Bt3eWSlnAZaAdL82gIR0CQ29jZL7GedX2UKGgGR0Bx9zhHbypaaAdL42gIR0CQ3MKf4AS4dX2UKGgGR0BupkB8x9G7aAdNAwFoCEdAkNzWXTmW+3V9lChoBkdAVN9FZxJd0WgHS75oCEdAkN6NIsiB5HV9lChoBkdAcXdtHQQcxWgHTQoBaAhHQJDe2A9V3ll1fZQoaAZHQHCc8274BWBoB00PAWgIR0CQ3uuJk5IZdX2UKGgGR0ByPo40dilSaAdL+2gIR0CQ3zezUqhEdX2UKGgGR0BKBQaBI4EPaAdLwWgIR0CQ4N3zMA3ldX2UKGgGR0ByTfIsAeaKaAdNBQFoCEdAkOFO0b961XV9lChoBkdAcjaezlcQiGgHS+ZoCEdAkOGHXyy2QXV9lChoBkdAcQtgyuZCwGgHTSEBaAhHQJDhv8iwB5p1fZQoaAZHQHLXJHI6r/9oB00RAWgIR0CQ4vy1NQCTdX2UKGgGR0BvzOwHJLdvaAdNDgFoCEdAkOTmjj7yhHV9lChoBkdAbqwTs6aLGmgHS/xoCEdAkOZGCEpRXXV9lChoBkdAcw3HjIaLoGgHS91oCEdAkOZNMGorF3V9lChoBkdAcQUpdKNADGgHS/5oCEdAkPtk3GXHBHV9lChoBkdAUxa/EfkmyGgHS8hoCEdAkPug4Otnw3V9lChoBkdAcHoxX4j8k2gHTRQBaAhHQJD71v2oNut1fZQoaAZHQEyPyFPBSDRoB0uvaAhHQJD8GtLcsUZ1fZQoaAZHQFZbWGRFI/ZoB0uqaAhHQJD8JNEgGKR1fZQoaAZHQHAiFBIFvAJoB0v0aAhHQJD8e3solUp1fZQoaAZHQHBMPzjFQ2xoB0vsaAhHQJD8uL9/BnB1fZQoaAZHQHN4lrhzeXRoB00qAWgIR0CQ/N9IPK+0dX2UKGgGR0ByN6pbUwztaAdNFgFoCEdAkP12wFC9iHV9lChoBkdAdCp6y0KJEmgHTU8BaAhHQJD9oRujynV1fZQoaAZHQHAxRwMpgCxoB00EAWgIR0CQ/lzV+Zw5dX2UKGgGR0Bxu5/x2B8QaAdNFAFoCEdAkP6c5fdAPnV9lChoBkdAcNF2UB4lhWgHTQABaAhHQJD+7bTMJQd1fZQoaAZHQHI1D2Bas6toB0voaAhHQJD/tGNJe3R1fZQoaAZHQHH0nkHUtqZoB0vpaAhHQJD/tSFXaJ11fZQoaAZHQHLVhm5DqnpoB00SAWgIR0CRAALAHmihdX2UKGgGR0BQ48+FDfFaaAdLrmgIR0CRAFXokiUxdX2UKGgGR0BwevPiT+vRaAdL52gIR0CRAJqGDcubdX2UKGgGR0Bxkj7O3UhFaAdL6mgIR0CRAN+V1Oj7dX2UKGgGR0Bvorj7yhBaaAdL8mgIR0CRAUeFtbcHdX2UKGgGR0BKgNsnAqNIaAdL1WgIR0CRAXe1a4c4dX2UKGgGR0BxB5AWznieaAdL/mgIR0CRAcoS+QEIdX2UKGgGR0BzeHFvQ4S6aAdNEwFoCEdAkQMWrS3LFHV9lChoBkdAcVK5byH2y2gHTUgBaAhHQJEDk9mpVCJ1fZQoaAZHQHFW9t2s7uFoB0vpaAhHQJEDxE/jbSJ1fZQoaAZHQHNgDAvcrRVoB0vTaAhHQJEEtbTtsvZ1fZQoaAZHQG3a7dadMCdoB000AWgIR0CRBNcmBvrGdX2UKGgGR0BwPaCcwxnGaAdNCwFoCEdAkQTlD4QBgnV9lChoBkdAcpTXtjTa02gHTUYBaAhHQJEFEngHeJp1fZQoaAZHQHC1xQizLOloB00TAWgIR0CRBXYSxqwhdX2UKGgGR0Bwy2w1R+BpaAdL8mgIR0CRBYBClabGdX2UKGgGR0BybiAZsKsuaAdL2mgIR0CRBiXbuc+adX2UKGgGR0ByAYL9deIEaAdL8mgIR0CRBiR15jYqdX2UKGgGR0ByXk6Lfk3kaAdNCQFoCEdAkQZQbuMMqnV9lChoBkdAcr5B/qgRLGgHTQABaAhHQJEGsjVx0dR1fZQoaAZHQG/s8v/R3NdoB0vkaAhHQJEG/Npudf91fZQoaAZHQHKPvwVj7Q9oB0vcaAhHQJEHL/dZaFF1fZQoaAZHQG9IircTJyRoB01GAWgIR0CRCRxlxwQ2dX2UKGgGR0BxdA9HMEA6aAdL6GgIR0CRCWQ1rIo3dX2UKGgGR0Bw8PJ4jbBXaAdNBAFoCEdAkQl3WFvhqHV9lChoBkdAT1MR8MNMG2gHS8doCEdAkQneanaWX3V9lChoBkdAcqrEgntv42gHTS4BaAhHQJEK/5tWMjx1fZQoaAZHQHBOat1ZDAtoB0v+aAhHQJELGjesPrh1fZQoaAZHQHEIiULUkOZoB0vpaAhHQJELItnPE891fZQoaAZHQHBfFsYVIqdoB0v0aAhHQJELdNBWxQl1fZQoaAZHQHJeKXv6TGJoB0veaAhHQJELoy1uzhR1fZQoaAZHQHIYMT8HfMxoB00ZAWgIR0CRC7fixVyWdX2UKGgGR0BtLGs90RvnaAdL7GgIR0CRDBtygf2cdX2UKGgGR0BxrFCzC1qnaAdNMQFoCEdAkQwiqMm4RXV9lChoBkdAckeRUWEbpGgHTQoBaAhHQJEMi1TisGR1fZQoaAZHQHGppSrHU+doB00GAWgIR0CRDTgSvkimdX2UKGgGR0ByhY9nscABaAdNGgFoCEdAkQ1wwTM7l3V9lChoBkdAcV/ib2Dg62gHTR0BaAhHQJEN6yprDZV1fZQoaAZHQG3moXj2i+NoB0v1aAhHQJEPPKKYRd11fZQoaAZHQHLz8KkVN6BoB0v5aAhHQJEPyweNkvt1fZQoaAZHQHGg/nOjZctoB00WAWgIR0CRD8/5+H8CdX2UKGgGR0BwooFX7tRfaAdNHQFoCEdAkRA+chC+lHV9lChoBkdAcypVlwtJ4GgHS+JoCEdAkREIzzmOl3V9lChoBkdAcYR1UVBUrGgHS+toCEdAkREsRYigTXV9lChoBkdAcj05lvqC6GgHTQYBaAhHQJEROmQ8wHt1fZQoaAZHQHC0BHbypaRoB00KAWgIR0CREdLDhtLtdX2UKGgGR0Bxnx8BuGbkaAdL7GgIR0CREl+5OJtSdX2UKGgGR0By4pHhCMP0aAdNMgFoCEdAkRKNDx9XtHV9lChoBkdAcJB4vN/vv2gHTQ0BaAhHQJESslb/wRZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 249, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69b0ab64329c97d01762a21556ba4322188936d3932f7536b9a3f351c48f99a9
|
3 |
+
size 148057
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a18654adc60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a18654add00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a18654adda0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a18654ade40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a18654adee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a18654adf80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a18654ae020>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a18654ae0c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a18654ae160>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a18654ae200>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a18654ae2a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a18654ae340>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a18661195c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 901120,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1744965933772021289,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAAAFAS9rlGqussVF7gmjCizA1L0OfKqLDcAAIA/AACAP2ZGPDvaEDU+w5GPPpfijb7jRRs+jhDHuwAAAAAAAAAABkZwPhKkDz/qa/29ZwjvvvebnT7WISq+AAAAAAAAAACzUT89N7PBP3A7Yj5+n0y9pIA9PGVpcDwAAAAAAAAAANMfM76nDw4/hXPwPUZRqL7OO+O9uNE9PgAAAAAAAAAA0OyFvuZiZz+4I26+YoUHvw93wL7fYyA9AAAAAAAAAADNsam9FVqhPwDO+76o2gK/J3uvvYmGhb4AAAAAAAAAALNgQb0DBUi8E0gFPLcUirxT2Xq9ih8dvgAAgD8AAIA/JrLEvUQPFj72ZBw9HKRJvjz5gb1qFmq9AAAAAAAAAACadaO99hw4uu1FnDX10qMwh8lzugvasbQAAIA/AACAP2aozT1OKI0+QqSzvrthgb6kqxO+ANISvAAAAAAAAAAAZm4DPLj2uLmBRT601U2cLkVDWLvndpAzAACAPwAAgD8ztMC87VKpPgXvVb1hCZa+hH6AvAYZDb0AAAAAAAAAAAb6FL4mn74/+iv/vmGQYL4Nvw++Frp6vgAAAAAAAAAA4Oa3vilcKT9yZqo9StvwvvN/jb7dN1Y+AAAAAAAAAAAAQI06SGeYul7dNLOdWD6wksm2Oj3QxjMAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.09887999999999997,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHM85FLFn7KMAWyUTQQBjAF0lEdAkNBYjB2wFHV9lChoBkdARpeo5xR2sGgHS7poCEdAkNFlhXr+pHV9lChoBkdAcI1uvllsg2gHS+FoCEdAkNHjiXIEKXV9lChoBkdAcAXXmNipemgHS/poCEdAkNImDxsl9nV9lChoBkdAcDsLofSx7mgHS/RoCEdAkNI/SpiqhnV9lChoBkdAciLxiobXH2gHS/xoCEdAkNKuYQarFXV9lChoBkdAcBNKL876pGgHS/1oCEdAkNLAfuCwr3V9lChoBkdAcF+DYAbQ1WgHTRoBaAhHQJDTfNQj2SN1fZQoaAZHQHBO7+98JD5oB0vlaAhHQJDTmmsNlRR1fZQoaAZHQHFcMYl6Z6VoB00BAWgIR0CQ06tsN2C/dX2UKGgGR0BwUI6QvHtGaAdNGQFoCEdAkNQ8BhhH9XV9lChoBkdAb3Q2BJ7LMmgHS+FoCEdAkNSJwsGxEHV9lChoBkdAcLjvYvnKXGgHS/JoCEdAkNTs/lhgE3V9lChoBkdAc1lixVyWA2gHS+RoCEdAkNVE6T4cm3V9lChoBkdAcHvUhV2ic2gHS/5oCEdAkNXWcnVoYnV9lChoBkdAcXV75Ec81WgHS+VoCEdAkNYmSZBsynV9lChoBkdAc3E7DVH4GmgHTUABaAhHQJDXSZtvXK91fZQoaAZHQHK14Lw4KhNoB0vQaAhHQJDXSQV9F4N1fZQoaAZHQG+7lPi1iONoB0vgaAhHQJDZvaK1og51fZQoaAZHQHFP2Ya5wwVoB0v8aAhHQJDbMslLOA11fZQoaAZHQHD+MawUxmFoB00PAWgIR0CQ249tMwlCdX2UKGgGR0Bt3eWSlnAZaAdL82gIR0CQ29jZL7GedX2UKGgGR0Bx9zhHbypaaAdL42gIR0CQ3MKf4AS4dX2UKGgGR0BupkB8x9G7aAdNAwFoCEdAkNzWXTmW+3V9lChoBkdAVN9FZxJd0WgHS75oCEdAkN6NIsiB5HV9lChoBkdAcXdtHQQcxWgHTQoBaAhHQJDe2A9V3ll1fZQoaAZHQHCc8274BWBoB00PAWgIR0CQ3uuJk5IZdX2UKGgGR0ByPo40dilSaAdL+2gIR0CQ3zezUqhEdX2UKGgGR0BKBQaBI4EPaAdLwWgIR0CQ4N3zMA3ldX2UKGgGR0ByTfIsAeaKaAdNBQFoCEdAkOFO0b961XV9lChoBkdAcjaezlcQiGgHS+ZoCEdAkOGHXyy2QXV9lChoBkdAcQtgyuZCwGgHTSEBaAhHQJDhv8iwB5p1fZQoaAZHQHLXJHI6r/9oB00RAWgIR0CQ4vy1NQCTdX2UKGgGR0BvzOwHJLdvaAdNDgFoCEdAkOTmjj7yhHV9lChoBkdAbqwTs6aLGmgHS/xoCEdAkOZGCEpRXXV9lChoBkdAcw3HjIaLoGgHS91oCEdAkOZNMGorF3V9lChoBkdAcQUpdKNADGgHS/5oCEdAkPtk3GXHBHV9lChoBkdAUxa/EfkmyGgHS8hoCEdAkPug4Otnw3V9lChoBkdAcHoxX4j8k2gHTRQBaAhHQJD71v2oNut1fZQoaAZHQEyPyFPBSDRoB0uvaAhHQJD8GtLcsUZ1fZQoaAZHQFZbWGRFI/ZoB0uqaAhHQJD8JNEgGKR1fZQoaAZHQHAiFBIFvAJoB0v0aAhHQJD8e3solUp1fZQoaAZHQHBMPzjFQ2xoB0vsaAhHQJD8uL9/BnB1fZQoaAZHQHN4lrhzeXRoB00qAWgIR0CQ/N9IPK+0dX2UKGgGR0ByN6pbUwztaAdNFgFoCEdAkP12wFC9iHV9lChoBkdAdCp6y0KJEmgHTU8BaAhHQJD9oRujynV1fZQoaAZHQHAxRwMpgCxoB00EAWgIR0CQ/lzV+Zw5dX2UKGgGR0Bxu5/x2B8QaAdNFAFoCEdAkP6c5fdAPnV9lChoBkdAcNF2UB4lhWgHTQABaAhHQJD+7bTMJQd1fZQoaAZHQHI1D2Bas6toB0voaAhHQJD/tGNJe3R1fZQoaAZHQHH0nkHUtqZoB0vpaAhHQJD/tSFXaJ11fZQoaAZHQHLVhm5DqnpoB00SAWgIR0CRAALAHmihdX2UKGgGR0BQ48+FDfFaaAdLrmgIR0CRAFXokiUxdX2UKGgGR0BwevPiT+vRaAdL52gIR0CRAJqGDcubdX2UKGgGR0Bxkj7O3UhFaAdL6mgIR0CRAN+V1Oj7dX2UKGgGR0Bvorj7yhBaaAdL8mgIR0CRAUeFtbcHdX2UKGgGR0BKgNsnAqNIaAdL1WgIR0CRAXe1a4c4dX2UKGgGR0BxB5AWznieaAdL/mgIR0CRAcoS+QEIdX2UKGgGR0BzeHFvQ4S6aAdNEwFoCEdAkQMWrS3LFHV9lChoBkdAcVK5byH2y2gHTUgBaAhHQJEDk9mpVCJ1fZQoaAZHQHFW9t2s7uFoB0vpaAhHQJEDxE/jbSJ1fZQoaAZHQHNgDAvcrRVoB0vTaAhHQJEEtbTtsvZ1fZQoaAZHQG3a7dadMCdoB000AWgIR0CRBNcmBvrGdX2UKGgGR0BwPaCcwxnGaAdNCwFoCEdAkQTlD4QBgnV9lChoBkdAcpTXtjTa02gHTUYBaAhHQJEFEngHeJp1fZQoaAZHQHC1xQizLOloB00TAWgIR0CRBXYSxqwhdX2UKGgGR0Bwy2w1R+BpaAdL8mgIR0CRBYBClabGdX2UKGgGR0BybiAZsKsuaAdL2mgIR0CRBiXbuc+adX2UKGgGR0ByAYL9deIEaAdL8mgIR0CRBiR15jYqdX2UKGgGR0ByXk6Lfk3kaAdNCQFoCEdAkQZQbuMMqnV9lChoBkdAcr5B/qgRLGgHTQABaAhHQJEGsjVx0dR1fZQoaAZHQG/s8v/R3NdoB0vkaAhHQJEG/Npudf91fZQoaAZHQHKPvwVj7Q9oB0vcaAhHQJEHL/dZaFF1fZQoaAZHQG9IircTJyRoB01GAWgIR0CRCRxlxwQ2dX2UKGgGR0BxdA9HMEA6aAdL6GgIR0CRCWQ1rIo3dX2UKGgGR0Bw8PJ4jbBXaAdNBAFoCEdAkQl3WFvhqHV9lChoBkdAT1MR8MNMG2gHS8doCEdAkQneanaWX3V9lChoBkdAcqrEgntv42gHTS4BaAhHQJEK/5tWMjx1fZQoaAZHQHBOat1ZDAtoB0v+aAhHQJELGjesPrh1fZQoaAZHQHEIiULUkOZoB0vpaAhHQJELItnPE891fZQoaAZHQHBfFsYVIqdoB0v0aAhHQJELdNBWxQl1fZQoaAZHQHJeKXv6TGJoB0veaAhHQJELoy1uzhR1fZQoaAZHQHIYMT8HfMxoB00ZAWgIR0CRC7fixVyWdX2UKGgGR0BtLGs90RvnaAdL7GgIR0CRDBtygf2cdX2UKGgGR0BxrFCzC1qnaAdNMQFoCEdAkQwiqMm4RXV9lChoBkdAckeRUWEbpGgHTQoBaAhHQJEMi1TisGR1fZQoaAZHQHGppSrHU+doB00GAWgIR0CRDTgSvkimdX2UKGgGR0ByhY9nscABaAdNGgFoCEdAkQ1wwTM7l3V9lChoBkdAcV/ib2Dg62gHTR0BaAhHQJEN6yprDZV1fZQoaAZHQG3moXj2i+NoB0v1aAhHQJEPPKKYRd11fZQoaAZHQHLz8KkVN6BoB0v5aAhHQJEPyweNkvt1fZQoaAZHQHGg/nOjZctoB00WAWgIR0CRD8/5+H8CdX2UKGgGR0BwooFX7tRfaAdNHQFoCEdAkRA+chC+lHV9lChoBkdAcypVlwtJ4GgHS+JoCEdAkREIzzmOl3V9lChoBkdAcYR1UVBUrGgHS+toCEdAkREsRYigTXV9lChoBkdAcj05lvqC6GgHTQYBaAhHQJEROmQ8wHt1fZQoaAZHQHC0BHbypaRoB00KAWgIR0CREdLDhtLtdX2UKGgGR0Bxnx8BuGbkaAdL7GgIR0CREl+5OJtSdX2UKGgGR0By4pHhCMP0aAdNMgFoCEdAkRKNDx9XtHV9lChoBkdAcJB4vN/vv2gHTQ0BaAhHQJESslb/wRZ1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 249,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8480878c964f9c2c87fdf28a6446599eb00e63c0b30e0caf480b5a0217344f93
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08b107de617affd6102434758045c1b92038a9165ca1bd46f4ad52d495a38cb7
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025
|
2 |
+
- Python: 3.11.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.6.0+cu124
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 2.0.2
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdb765d850f10da8eb77dd1077a34933fdfebede66974d9090a5410fc13962d2
|
3 |
+
size 144436
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.58321184127965, "std_reward": 25.88475691916565, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-04-18T09:05:11.584339"}
|