odunola commited on
Commit
dd12f40
·
verified ·
1 Parent(s): 62398b2

Upload model.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. model.py +143 -0
model.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from dataclasses import dataclass
4
+ from transformers import AutoConfig, WhisperConfig, LlamaConfig, WhisperModel, AutoModelForCausalLM
5
+ from typing import Callable, Optional, Union
6
+
7
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPast, CausalLMOutputWithPast
8
+ from transformers.cache_utils import Cache
9
+ from transformers.processing_utils import Unpack
10
+
11
+
12
+ @dataclass
13
+ class ManaraConfig:
14
+ audio_config: WhisperConfig
15
+ text_config: LlamaConfig
16
+
17
+
18
+ class MultiModalProjector(nn.Module):
19
+
20
+ def __init__(self, config: ManaraConfig):
21
+ super().__init__()
22
+ self.linear_1 = nn.Linear(config.audio_config.d_model,
23
+ config.text_config.hidden_size, bias=False)
24
+ self.act = nn.SiLU()
25
+ self.pool = nn.Conv1d(
26
+ config.text_config.hidden_size,
27
+ config.text_config.hidden_size,
28
+ kernel_size=2,
29
+ stride=2,
30
+ bias=False
31
+ )
32
+ self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size,
33
+ bias=False)
34
+
35
+ def forward(self, audio_features):
36
+ hidden_states = self.linear_1(audio_features)
37
+ hidden_states = self.act(hidden_states)
38
+ hidden_states = self.pool(hidden_states.transpose(1, 2)).transpose(1, 2)
39
+ hidden_states = self.linear_2(hidden_states)
40
+ return hidden_states
41
+
42
+
43
+ class ManaraForConditionalGeneration(nn.Module):
44
+ def __init__(self):
45
+ super().__init__()
46
+ audio = 'openai/whisper-large-v3'
47
+ text = 'babs/llama-multi-lm'
48
+ self.text_config = LlamaConfig.from_pretrained(text)
49
+ self.audio_config = WhisperConfig.from_pretrained(audio)
50
+
51
+ config = ManaraConfig(self.audio_config, self.text_config)
52
+ self.vocab_size = config.text_config.vocab_size
53
+
54
+ audio_tower = WhisperModel.from_pretrained(audio,
55
+ attn_implementation='flash_attention_2')
56
+ self.audio_tower = audio_tower.encoder
57
+ self.audio_tower.requires_grad_(False)
58
+ del audio_tower
59
+
60
+ self.language_model = AutoModelForCausalLM.from_pretrained(text,
61
+ attn_implementation='flash_attention_2')
62
+ self.multi_modal_projector = MultiModalProjector(config)
63
+ self.audio_token_id = 128002
64
+
65
+ def get_input_embeddings(self):
66
+ return self.language_model.get_input_embeddings()
67
+
68
+ def set_input_embeddings(self, value):
69
+ self.language_model.set_input_embeddings(value)
70
+
71
+ def get_output_embeddings(self):
72
+ return self.language_model.get_output_embeddings()
73
+
74
+ def set_output_embeddings(self, new_embeddings):
75
+ self.language_model.set_output_embeddings(new_embeddings)
76
+
77
+ def set_decoder(self, decoder):
78
+ self.language_model.set_decoder(decoder)
79
+
80
+ def get_decoder(self):
81
+ return self.language_model.get_decoder()
82
+
83
+ def get_audio_embeds(self, input_features: torch.FloatTensor):
84
+ audio_outputs = self.audio_tower(input_features)
85
+ audio_hidden_states = audio_outputs.last_hidden_state
86
+ # audio_hidden_states = audio_hidden_states.reshape(-1, self.config.audio_config.intermediate_size)
87
+ audio_embeds = self.multi_modal_projector(audio_hidden_states)
88
+ return audio_embeds
89
+
90
+ def forward(
91
+ self,
92
+ input_ids: Optional[torch.LongTensor] = None,
93
+ input_features: Optional[torch.FloatTensor] = None,
94
+ attention_mask: Optional[torch.Tensor] = None,
95
+ position_ids: Optional[torch.LongTensor] = None,
96
+ past_key_values: Optional[Cache] = None,
97
+ inputs_embeds: Optional[torch.FloatTensor] = None,
98
+ labels: Optional[torch.LongTensor] = None,
99
+ use_cache: Optional[bool] = None,
100
+ cache_position: Optional[torch.LongTensor] = None,
101
+ logits_to_keep: Union[int, torch.Tensor] = 0,
102
+ **kwargs,
103
+ ) -> CausalLMOutputWithPast:
104
+
105
+ if inputs_embeds is None:
106
+ inputs_embeds = self.get_input_embeddings()(input_ids)
107
+
108
+ if input_features is not None:
109
+ audio_embeds = self.get_audio_embeds(input_features)
110
+
111
+ audio_token_mask = (input_ids == self.audio_token_id)
112
+
113
+ if audio_token_mask.sum() != audio_embeds.shape[0] * audio_embeds.shape[1]:
114
+ raise ValueError(
115
+ f"The number of audio tokens in input_ids ({audio_token_mask.sum()}) does not match "
116
+ f"the number of audio features ({audio_embeds.shape[0] * audio_embeds.shape[1]}). "
117
+ "Check your data preparation.")
118
+
119
+ inputs_embeds[audio_token_mask] = audio_embeds.flatten(0, 1).to(inputs_embeds.dtype)
120
+
121
+ outputs = self.language_model(
122
+ attention_mask=attention_mask,
123
+ position_ids=position_ids,
124
+ past_key_values=past_key_values,
125
+ inputs_embeds=inputs_embeds,
126
+ labels=labels,
127
+ use_cache=use_cache,
128
+ cache_position=cache_position,
129
+ logits_to_keep=logits_to_keep,
130
+ return_dict=True,
131
+ **kwargs,
132
+ )
133
+ return outputs
134
+
135
+
136
+ if __name__ == "__main__":
137
+ model = ManaraForConditionalGeneration()
138
+ print(model)
139
+ print("Audio Token ID:", model.audio_token_id)
140
+ print("Vocab Size:", model.vocab_size)
141
+ print("Text Config:", model.text_config)
142
+ print("Audio Config:", model.audio_config)
143
+ print("Model Parameters:", sum(p.numel() for p in model.parameters() if p.requires_grad))