olokshyn commited on
Commit
98e3d5f
·
verified ·
1 Parent(s): bf6c6db

Trained for 1,500,000 timesteps

Browse files
README.md CHANGED
@@ -8,21 +8,30 @@ tags:
8
  model-index:
9
  - name: PPO
10
  results:
11
- - metrics:
12
- - type: mean_reward
13
- value: 268.48 +/- 20.24
14
- name: mean_reward
15
- task:
16
  type: reinforcement-learning
17
  name: reinforcement-learning
18
  dataset:
19
  name: LunarLander-v2
20
  type: LunarLander-v2
 
 
 
 
 
21
  ---
22
 
23
- # **PPO** Agent playing **LunarLander-v2**
24
- This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
-
26
- ## Usage (with Stable-baselines3)
27
- TODO: Add your code
28
-
 
 
 
 
 
 
 
 
 
8
  model-index:
9
  - name: PPO
10
  results:
11
+ - task:
 
 
 
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
  name: LunarLander-v2
16
  type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 271.05 +/- 18.18
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff721c937a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff721c93830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff721c938c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff721c93950>", "_build": "<function ActorCriticPolicy._build at 0x7ff721c939e0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff721c93a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff721c93b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff721c93b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff721c93c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff721c93cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff721c93d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff721c6a1e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652617279.5659566, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWV0AEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDDHwAZAEUAGQCFwBTAJRORz9QYk3S8an8Rz8aNuLrHEMth5QpjAF4lIWUjB48aXB5dGhvbi1pbnB1dC04LTYxNDAzZDQ4M2JkYj6UjAg8bGFtYmRhPpRLB0MAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgXfZR9lChoFGgOjAxfX3F1YWxuYW1lX1+UaA6MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBWMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0AEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDDHwAZAEUAGQCFwBTAJRORz9QYk3S8an8Rz8aNuLrHEMth5QpjAF4lIWUjB48aXB5dGhvbi1pbnB1dC04LTYxNDAzZDQ4M2JkYj6UjAg8bGFtYmRhPpRLB0MAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgXfZR9lChoFGgOjAxfX3F1YWxuYW1lX1+UaA6MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBWMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJpE1DzDcT+6OeOKu6s4MziegAW6L58jOgAAgD8AAIA/gC18PYXjxLle+bk6q36eNfhKTDplqte5AACAPwAAgD9a+8o99rx5unKINDeDSoA28AOXum0EdjUAAIA/AACAP2ZZpDxcnxu62z1wuYlcOLS6GCC7xk2KOAAAgD8AAIA/zds8PeHwhLrRtiW4Rglys23ERzkEEj43AACAPwAAgD+a+Zs6XLdsunvpVDtea4Q4c+Psut7+/rkAAIA/AACAP4C/DT2PHk+6xlCTO1qGFDgGri86gP1NtwAAgD8AAIA/mtMUPPb0CLrEb5E7vpMPOMRYvjqGja41AACAPwAAgD8gUyY+WHaSP26ewT4Wz/O+zSyUPo7h3D0AAAAAAAAAAJo6RT1IN5W6nmW6uL5Ro7NSYJi6zb3XNwAAgD8AAIA/M8NIPB8N1bnGaA27chYxtpQNlLqTaaI1AACAPwAAgD9mUFy8w8k4us4rTzhlV4szkBSuOVKlbbcAAIA/AACAPwAYGL04Kfq7bA+rPNwaTr4rz5y5nQYfPAAAgD8AAIA/zYv4PFybXrqrOPc4txUss1mtTrt9KQ64AACAPwAAgD8A6e88rqmRul3Biburkq62HX+3OfXInzoAAIA/AACAP02BJL2P/hG6ttWhu6LEaTii4026Rhu6OAAAgD8AAIA/MyhPPY8ib7qL6fQ793XStf17+roY/8W0AACAPwAAgD+awYS7cc1guY5uyberJJCyG1w5ORqT6zYAAIA/AACAP+bnhD2NVAk+OTa4PS2oXL5pOOk9o7favAAAAAAAAAAAMyWvPHsOjLrupDA4JKklM/+FhzobN023AACAPwAAgD8a+4w91+cyOgb8VDsL9S82tWQ+uzptgroAAIA/AACAP2ZCwLwpOGy6wGcpuz51krYRBLQ66MRGOgAAgD8AAIA/zcwTOyngWrognQG6yZlPthGq6Dmepb41AACAPwAAgD+zDnY9XFNzurNcLbv0IYs2odsmOm5x97UAAIA/AACAP5rMVL65X4o/DsXvvqKuIb/Xx4C+rv6EvQAAAAAAAAAAzZOuPXu2m7o4yDg7YmgbOMsC6blIF+i5AACAPwAAgD/NB1299kw+uq5fJrnEIemzcanfOiDPQzgAAIA/AACAPwaZYT7N/To/HhjRvq8S4L6rWa49UwVsvgAAAAAAAAAAzYg4PVxbdLrWps67ldGvNssrbrqzeCC2AACAPwAAgD9m1ha8j3JzumLSdDn+mv00Nj04OyJrjLgAAIA/AACAP2ZSJzwfXf25poNzOl6pETbcuIw5QRyMuQAAgD8AAIA/mnXrPBG7mz/Nj0U+WvARv5lmID2GHfE8AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3zE89jNeYkCUhpRSlIwBbJRN6AOMAXSUR0CLO6B7NSqEdX2UKGgGaAloD0MI1uWUgJimYECUhpRSlGgVTegDaBZHQIs7pNj9XLh1fZQoaAZoCWgPQwjWHCCYo2NiQJSGlFKUaBVN6ANoFkdAizv4yO7xu3V9lChoBmgJaA9DCKw8gbBTDkNAlIaUUpRoFUu8aBZHQIs97g/C66J1fZQoaAZoCWgPQwhO7+L9uGJoQJSGlFKUaBVN6ANoFkdAi0dU+LWI43V9lChoBmgJaA9DCH2x9+KLCEhAlIaUUpRoFUvaaBZHQItNXQWvbGp1fZQoaAZoCWgPQwjRXRJnRexvQJSGlFKUaBVNHQNoFkdAi06r3bmEG3V9lChoBmgJaA9DCMGpDyRvYWVAlIaUUpRoFU3oA2gWR0CLUY9PDYRNdX2UKGgGaAloD0MIUU60qxA8YUCUhpRSlGgVTegDaBZHQItR4tL+PzZ1fZQoaAZoCWgPQwidaFch5almQJSGlFKUaBVN6ANoFkdAi1P7W/ag3HV9lChoBmgJaA9DCGnhsgobFWNAlIaUUpRoFU3oA2gWR0CLVV8rqdH2dX2UKGgGaAloD0MI1Jy8yAQYSECUhpRSlGgVS8poFkdAi1XVN5+pfnV9lChoBmgJaA9DCGQ6dHrer1NAlIaUUpRoFUuoaBZHQItWIg1WKdh1fZQoaAZoCWgPQwjsL7snj3pjQJSGlFKUaBVN6ANoFkdAi2M1F6RhdHV9lChoBmgJaA9DCFG9NbBVwGJAlIaUUpRoFU3oA2gWR0CLZdIkJKJ3dX2UKGgGaAloD0MInpeKjflNZ0CUhpRSlGgVTegDaBZHQItoHR7Z39t1fZQoaAZoCWgPQwj4qL9eYYxTQJSGlFKUaBVLtWgWR0CLa+Lgn+hodX2UKGgGaAloD0MIF2GKcmnMN0CUhpRSlGgVS8FoFkdAi2yQIdELIHV9lChoBmgJaA9DCAmlL4ScT0hAlIaUUpRoFUu6aBZHQItv7cIqslt1fZQoaAZoCWgPQwgpdck4Rn9lQJSGlFKUaBVN6ANoFkdAi3GajN6gNHV9lChoBmgJaA9DCPvJGB9mcmZAlIaUUpRoFU3oA2gWR0CLeLlxwQ18dX2UKGgGaAloD0MIv56vWa5/ZkCUhpRSlGgVTegDaBZHQIt/XevZAY51fZQoaAZoCWgPQwhdiUD1j45gQJSGlFKUaBVN6ANoFkdAi4L3TmW+oXV9lChoBmgJaA9DCPMf0m9fEWZAlIaUUpRoFU3oA2gWR0CLioolUp/gdX2UKGgGaAloD0MIEy15PK1nZkCUhpRSlGgVTegDaBZHQIuO4EZBLPF1fZQoaAZoCWgPQwg58Gq5s5VhQJSGlFKUaBVN6ANoFkdAi5KDtw71ZnV9lChoBmgJaA9DCCMsKuJ0TWVAlIaUUpRoFU3oA2gWR0CL9VGNJe3QdX2UKGgGaAloD0MI7SsP0lP5Z0CUhpRSlGgVTegDaBZHQIv2ISeyzHF1fZQoaAZoCWgPQwiuZwjHrCtkQJSGlFKUaBVN6ANoFkdAjADZEc81XXV9lChoBmgJaA9DCPdWJCaoC2ZAlIaUUpRoFU3oA2gWR0CMFzbpu/DcdX2UKGgGaAloD0MIPj22ZUBjYkCUhpRSlGgVTegDaBZHQIwhZ2yLQ5Z1fZQoaAZoCWgPQwi6MT1hieVCQJSGlFKUaBVLrmgWR0CMJcJqqOtGdX2UKGgGaAloD0MI2IFzRhQkYkCUhpRSlGgVTegDaBZHQIwn9QAMlTp1fZQoaAZoCWgPQwjk27sG/V9iQJSGlFKUaBVN6ANoFkdAjCoLu6VdHHV9lChoBmgJaA9DCDLIXYQp3WRAlIaUUpRoFU3oA2gWR0CMKnIatLcsdX2UKGgGaAloD0MID18mihC+YUCUhpRSlGgVTegDaBZHQIwticAiml91fZQoaAZoCWgPQwg1RuuoauVnQJSGlFKUaBVN6ANoFkdAjDKIlUp/gHV9lChoBmgJaA9DCHAjZYukamZAlIaUUpRoFU3oA2gWR0CMOvuhK15TdX2UKGgGaAloD0MIVwbVBqdIZUCUhpRSlGgVTegDaBZHQIw7adpZfUp1fZQoaAZoCWgPQwhIaqFk8uljQJSGlFKUaBVN6ANoFkdAjD2uJ1q33HV9lChoBmgJaA9DCLQDritmRlBAlIaUUpRoFUu4aBZHQIxE595Qgs91fZQoaAZoCWgPQwi/EHLe//tnQJSGlFKUaBVN6ANoFkdAjEiIePq9oXV9lChoBmgJaA9DCOPiqNxEj05AlIaUUpRoFUvgaBZHQIxTQR/ViF11fZQoaAZoCWgPQwgvwakPpKFkQJSGlFKUaBVN6ANoFkdAjFPL8zhxYXV9lChoBmgJaA9DCN0m3CvzPmZAlIaUUpRoFU3oA2gWR0CMVn2dNFjNdX2UKGgGaAloD0MIDVTGv8+PYUCUhpRSlGgVTegDaBZHQIxYGtCAtnR1fZQoaAZoCWgPQwh+UYL+QgFoQJSGlFKUaBVN6ANoFkdAjFim7jDKo3V9lChoBmgJaA9DCLBUF/Ayi2RAlIaUUpRoFU3oA2gWR0CMWQNIbwSbdX2UKGgGaAloD0MI9IsS9JcVYkCUhpRSlGgVTegDaBZHQIxnscwQDmt1fZQoaAZoCWgPQwjzBMJOsTVnQJSGlFKUaBVN6ANoFkdAjGqibtqpLnV9lChoBmgJaA9DCBA7U+i8nWVAlIaUUpRoFU3oA2gWR0CMbTQ/oq0/dX2UKGgGaAloD0MIc9nonJ9iY0CUhpRSlGgVTegDaBZHQIxxddAxBVx1fZQoaAZoCWgPQwhcIazGErdnQJSGlFKUaBVN6ANoFkdAjHI5ooNNJ3V9lChoBmgJaA9DCEmERrBxTF9AlIaUUpRoFU3oA2gWR0CMdd2ugYgrdX2UKGgGaAloD0MIU0Da/4BhY0CUhpRSlGgVTegDaBZHQIx3wrQPZqV1fZQoaAZoCWgPQwhG6j2VU4pmQJSGlFKUaBVN6ANoFkdAjH7bz06HTXV9lChoBmgJaA9DCA+1bRiFqWFAlIaUUpRoFU3oA2gWR0CMhZlEJBw/dX2UKGgGaAloD0MI9+eiIWMfakCUhpRSlGgVTegDaBZHQIyJIMYuTRp1fZQoaAZoCWgPQwizP1Bu28hiQJSGlFKUaBVN6ANoFkdAjJB8JdB0IXV9lChoBmgJaA9DCG05l+KqDGNAlIaUUpRoFU3oA2gWR0CMlKjzqbBodX2UKGgGaAloD0MINBMM55pZZ0CUhpRSlGgVTegDaBZHQIyYZyfcvdx1fZQoaAZoCWgPQwiyoZv9gXhSQJSGlFKUaBVLx2gWR0CMmOzWwu/UdX2UKGgGaAloD0MIcHhBROrzcECUhpRSlGgVTSUBaBZHQIyl8NvwVj91fZQoaAZoCWgPQwgFNufgmcZpQJSGlFKUaBVN6ANoFkdAjLJvhZQpF3V9lChoBmgJaA9DCERtG0ZBlGRAlIaUUpRoFU3oA2gWR0CMsz/82rGSdX2UKGgGaAloD0MIgH7fv3kSUkCUhpRSlGgVS7JoFkdAjQDDVhCtzXV9lChoBmgJaA9DCOZAD7XtY2lAlIaUUpRoFU3oA2gWR0CNGFTTfBN3dX2UKGgGaAloD0MI8wLso9NFYkCUhpRSlGgVTegDaBZHQI0mHYtg8bJ1fZQoaAZoCWgPQwiNCpxsgyljQJSGlFKUaBVN6ANoFkdAjSgefqX4TXV9lChoBmgJaA9DCPeTMT7MI2hAlIaUUpRoFU3oA2gWR0CNKongpBomdX2UKGgGaAloD0MIls/yPLjAZUCUhpRSlGgVTegDaBZHQI0tojdHlOp1fZQoaAZoCWgPQwhGCfoLPZVjQJSGlFKUaBVN6ANoFkdAjTLEsrd30XV9lChoBmgJaA9DCGJlNPJ5FGNAlIaUUpRoFU3oA2gWR0CNO6biIciodX2UKGgGaAloD0MI/rYnSGy3ZUCUhpRSlGgVTegDaBZHQI08F2C/XXl1fZQoaAZoCWgPQwil942vvSlkQJSGlFKUaBVN6ANoFkdAjT6K6FuejHV9lChoBmgJaA9DCLiwbrx7UnJAlIaUUpRoFU29A2gWR0CNQecAiml7dX2UKGgGaAloD0MIqU2c3G9aaUCUhpRSlGgVTegDaBZHQI1GCeK8+Rp1fZQoaAZoCWgPQwh9dytL9OZwQJSGlFKUaBVNmANoFkdAjUr0tI0653V9lChoBmgJaA9DCLYPecvV8XFAlIaUUpRoFU3LA2gWR0CNUm9eyAx0dX2UKGgGaAloD0MInMJKBRXcaECUhpRSlGgVTegDaBZHQI1Ucsg+yJN1fZQoaAZoCWgPQwjlfLH34rRmQJSGlFKUaBVN6ANoFkdAjVT3xFy7w3V9lChoBmgJaA9DCOcYkL3eUmhAlIaUUpRoFU3oA2gWR0CNWZmjCYTkdX2UKGgGaAloD0MInQ5kPbUwZkCUhpRSlGgVTegDaBZHQI1aAA4n4PB1fZQoaAZoCWgPQwjLoUW2c6FjQJSGlFKUaBVN6ANoFkdAjWjMFMZgonV9lChoBmgJaA9DCBCVRszsMGBAlIaUUpRoFU3oA2gWR0CNa9Dk2gnMdX2UKGgGaAloD0MIV+2akNboR0CUhpRSlGgVS9VoFkdAjWyQmmce83V9lChoBmgJaA9DCFxUi4hinmRAlIaUUpRoFU3oA2gWR0CNbl4gRsdldX2UKGgGaAloD0MIxZCcTFy3ZkCUhpRSlGgVTegDaBZHQI1yj9fkWAR1fZQoaAZoCWgPQwjNeFvptbFnQJSGlFKUaBVN6ANoFkdAjXkJItlI3HV9lChoBmgJaA9DCO26tyIxU3JAlIaUUpRoFU2bAWgWR0CNecfPHDJmdX2UKGgGaAloD0MIH9rHCn6XZUCUhpRSlGgVTegDaBZHQI2A0qnWJ791fZQoaAZoCWgPQwgXf9sTpJ9kQJSGlFKUaBVN6ANoFkdAjYfpwS8J2XV9lChoBmgJaA9DCH3LnC6LE2JAlIaUUpRoFU3oA2gWR0CNi7qQiiZfdX2UKGgGaAloD0MItmRVhBsNZ0CUhpRSlGgVTegDaBZHQI2TfljmSyN1fZQoaAZoCWgPQwjG+DB72dRwQJSGlFKUaBVN2gNoFkdAjZVgvL5h0HV9lChoBmgJaA9DCCld+pek7mZAlIaUUpRoFU3oA2gWR0CNm3lMAWBSdX2UKGgGaAloD0MI9u0kIvxXZkCUhpRSlGgVTegDaBZHQI2pzpFCswN1fZQoaAZoCWgPQwgYXd4criphQJSGlFKUaBVN6ANoFkdAjbaoX0oSc3V9lChoBmgJaA9DCIY41sXtuWJAlIaUUpRoFU3oA2gWR0CNt2vECNjtdX2UKGgGaAloD0MIsaayKOxcSkCUhpRSlGgVS8JoFkdAjbqIPCl7+nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78bb5df9f6d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78bb5df9f760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78bb5df9f7f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78bb5df9f880>", "_build": "<function ActorCriticPolicy._build at 0x78bb5df9f910>", "forward": "<function ActorCriticPolicy.forward at 0x78bb5df9f9a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78bb5df9fa30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78bb5df9fac0>", "_predict": "<function ActorCriticPolicy._predict at 0x78bb5df9fb50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78bb5df9fbe0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78bb5df9fc70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78bb5df9fd00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78bb5df50680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727718202313332487, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpP8Txxq1u7Fg3ZO17rxjtMr3O8Qiu4PAAAgD8AAIA/YGRXvur7Hj+L6O8+dteNvj3l3z3r3pM+AAAAAAAAAACA+Wm9bnfDPpHunL7TUNO+SeqsvrwZtzsAAAAAAAAAAM0t1rzirb4+uObSPW5Nhb5kotw9rvemuwAAAAAAAAAADZ1LvkW2DT+5+Jg+W92BvgZemr1JdJE+AAAAAAAAAADN6Tu9comkPgp6Ijw9Ypa+t8jSPAIQUb4AAAAAAAAAAADyOb0oB4U+sl70PLrUoL6lT7m93oQEPQAAAAAAAAAA5sEFvWxNmT5XzoI7NU2kviaD07n13zc9AAAAAAAAAAAz8XI8QI+uPj3neTt7PLe+VR8lvEszjz0AAAAAAAAAAJqZNbn2fES6iwD1tvo+2bH/bSK6kxoSNgAAgD8AAIA/5lwHPYJ9mj+NhuQ9HtO9vkINwT1Woo49AAAAAAAAAAAAgPO6XOtuujX+RbNflhAw9guFur5+yjMAAIA/AACAPzMDhryu7cK6Z5atu5OKLzyHrFG7PVMdPQAAgD8AAIA/ZobDu2yhjT+Gxqe9zuHJviTKkDsAAHu9AAAAAAAAAAAz89+6BR7Ru1PQg7vn2KU8bcsnPZQPi70AAIA/AACAP40OGT7Wt5A/IhWcPlb5wL4S26Q+8NhZPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7mfiPyTZCMAWyUS/SMAXSUR0CbSg2aUiY+dX2UKGgGR0Bzd7RhMJyAaAdL8GgIR0CbSosJIDoydX2UKGgGR0BxGZmukk8iaAdL7mgIR0CbSxe4kNWmdX2UKGgGR0BwlrpbD/EPaAdL8GgIR0CbS3dMCcPOdX2UKGgGR0BxeHCwbEP2aAdNIAFoCEdAm0u0K/mDDnV9lChoBkdAbyn0K7ZnMGgHTQgBaAhHQJtLvgWJrL11fZQoaAZHQHKGp7LMcIZoB00NAWgIR0CbTFPO6d1/dX2UKGgGR0BwVxupCKJmaAdNBgFoCEdAm0yHVLBbfXV9lChoBkdAcScjk+5e7mgHTREBaAhHQJtMz8uSOip1fZQoaAZHQHFF0ihWYF9oB0v1aAhHQJtNMbHZK4B1fZQoaAZHQHBNBRhttQ9oB0vyaAhHQJtNX5/LDAJ1fZQoaAZHQFL1+u/1xsFoB0uiaAhHQJtNby6MBIZ1fZQoaAZHQHHGob0e2eBoB0vsaAhHQJtOVbkfcN91fZQoaAZHQHIlcFdLQHBoB00CAWgIR0CbTlH7xd6cdX2UKGgGR0BzCZdGAkLQaAdNWAFoCEdAm093Kr7wa3V9lChoBkdAcSLQ2uPmxWgHTQcBaAhHQJtQo68xsVN1fZQoaAZHQG/jqTbFjutoB0v4aAhHQJtQyGUOd5J1fZQoaAZHQHFOaRZEDyRoB00aAWgIR0CbURzHS4OMdX2UKGgGR0BwTfJV81GcaAdL+GgIR0CbUa4VARkFdX2UKGgGR0ByNCHrQgLaaAdL+2gIR0CbUgzQeFL4dX2UKGgGR0BvA98b70nPaAdNFAFoCEdAm1IY1k1/D3V9lChoBkdAcJ5ySV4X42gHTREBaAhHQJtSkZ4wAVB1fZQoaAZHQHACnDNyHVRoB0v7aAhHQJtSpvwVj7R1fZQoaAZHQHIa7RnezldoB00VAWgIR0CbU2m8ujASdX2UKGgGR0BxrG6H0se5aAdL8WgIR0CbU3ujASFodX2UKGgGR0BzNcBsANobaAdNAgFoCEdAm1OkeQuEmXV9lChoBkdAcNuPWQOnVGgHS/1oCEdAm1O1AAyVOnV9lChoBkdAb8gN4JNTLmgHTSUBaAhHQJtUDhqCYkV1fZQoaAZHQHEmqEOAiFFoB00PAWgIR0CbVSJQ+EAYdX2UKGgGR0BweMaKk2xZaAdL7GgIR0CbVW20AtFsdX2UKGgGR0BwxS/1xsEaaAdNJAFoCEdAm1Wd6w+t83V9lChoBkdAcmsS4e9zwWgHS9toCEdAm1YG0zCUHXV9lChoBkdAcpkIIWxhUmgHS+NoCEdAm1ZSSJTESHV9lChoBkdAcX7jYI0IkmgHS/5oCEdAm2wij1wo9nV9lChoBkdAUbBZLZi/f2gHS7poCEdAm2xH8jzI3nV9lChoBkdAcC8bobGWEGgHS/toCEdAm2yEfT1CgXV9lChoBkdAUmzc8DB/JGgHS6toCEdAm2ydFz+3pnV9lChoBkdAciDCaZx7zGgHTS0BaAhHQJts7YdyT6l1fZQoaAZHQHA3plJ6IFhoB00dAWgIR0CbbXUahpQDdX2UKGgGR0BwbHZM+NcXaAdNFgFoCEdAm23aN6w+uHV9lChoBkdAcay47ihnJ2gHS+ZoCEdAm23eMuOCG3V9lChoBkdAcU19Sde6Z2gHTRQBaAhHQJtt5rHlwLp1fZQoaAZHQHNOj4tYjjdoB0vzaAhHQJtt5edCmdl1fZQoaAZHQHEuufdyksVoB00KAWgIR0CbbpVlwtJ4dX2UKGgGR0BvBpE0BOpLaAdL7WgIR0Cbb2H2AXl9dX2UKGgGR0BxXNSDRMN+aAdL+GgIR0Cbb/hYeT3ZdX2UKGgGR0ByHFigCfYjaAdL52gIR0CbcC3qzJIUdX2UKGgGR0Bxlt29tdiVaAdL4GgIR0CbcFAeJYT1dX2UKGgGR0Bx7QAiml67aAdNMAFoCEdAm3FwJswcpHV9lChoBkdAcpfOH31zyWgHS+poCEdAm3IDz3AVPHV9lChoBkdActa2cJ+lTGgHS+ZoCEdAm3IKaG5+Y3V9lChoBkdAcUOk8Rtgr2gHS/VoCEdAm3KelTFVDXV9lChoBkdAbtcIomXw9mgHS+doCEdAm3OEALiMpHV9lChoBkdAcm7zmwJPZmgHS/VoCEdAm3PuEh7mdXV9lChoBkdAcftqc3EQ5GgHTQUBaAhHQJt0brVvuPV1fZQoaAZHQHGbP2K2rn1oB00zAWgIR0CbdH4MnZ00dX2UKGgGR0Bw1uqhlDneaAdNFwFoCEdAm3SG8yvcJ3V9lChoBkdAcESziS7oS2gHTRUBaAhHQJt01EZzgdh1fZQoaAZHQHNJ+EAYHgRoB005AWgIR0CbdOcm0E5idX2UKGgGR0Bx+VXlr/KhaAdL6WgIR0CbdVYsd1dPdX2UKGgGR0BwqCfL9uP4aAdNEQFoCEdAm3V3LidauHV9lChoBkdAcCJor4Fia2gHS/9oCEdAm3ZXAAQxvnV9lChoBkdAcsrdvbXYlWgHTQEBaAhHQJt2uVpsXSB1fZQoaAZHQHF38VLzwttoB00NAWgIR0Cbdt4PwuuidX2UKGgGR0BzX0Fiay8jaAdL3WgIR0CbdwpJPIn0dX2UKGgGR0Bu2xnOB19waAdL+GgIR0CbeDebutwKdX2UKGgGR0Bwhhalk6LgaAdNBAFoCEdAm3iDUiILxHV9lChoBkdAb8Q1CPZIx2gHTQYBaAhHQJt5KvfTCtR1fZQoaAZHQHNdYuK4x1xoB0vnaAhHQJt5jrv9cbB1fZQoaAZHQHDheN96TntoB0vpaAhHQJt6FXU6PsB1fZQoaAZHQHGFcY64lQdoB00KAWgIR0CbeiAi3XqadX2UKGgGR0ByN0Vgx8D0aAdL9GgIR0CbemV8kUsWdX2UKGgGR0Bu/FRaX8fnaAdNAAFoCEdAm3q8TN+so3V9lChoBkdAcgISVnmJWWgHTQ8BaAhHQJt7bLzPKMh1fZQoaAZHQHI0ufukUK1oB0v0aAhHQJt7dJCjUNN1fZQoaAZHQG0ghGx2SuBoB0v/aAhHQJt7lFUhmoR1fZQoaAZHQHMqzVlPJq9oB00UAWgIR0Cbe5vzvqkedX2UKGgGR0Bx3cWM0gr6aAdL2mgIR0Cbe7/oJRfndX2UKGgGR0BzUD/CIk7faAdL5mgIR0CbfG3bVSXMdX2UKGgGR0BydqCZnctYaAdL7mgIR0CbfHnm7rcCdX2UKGgGR0Byj11eSjgyaAdL6WgIR0CbfKLa24NJdX2UKGgGR0BT951zQu27aAdLlGgIR0CbfVyDIzWPdX2UKGgGR0BzDNkVeruIaAdL7WgIR0CbfiKqGUOedX2UKGgGR0BxMVvsJIDpaAdNCgFoCEdAm36VEZzgdnV9lChoBkdAcG64uscQy2gHS+9oCEdAm382WD6Fd3V9lChoBkdAV0JokAxSHmgHS5poCEdAm39J9uxbCHV9lChoBkdAcTGCDmKZUmgHS+poCEdAm3+gUUO/cnV9lChoBkdAcXjbp/wy7GgHS+poCEdAm3/s3Q2MsHV9lChoBkdAcCZv4M4LkWgHTR0BaAhHQJuABr/Khct1fZQoaAZHQHJ365f+judoB0vxaAhHQJuBHBciW3V1fZQoaAZHQG+KTxPO6d1oB00WAWgIR0CbgVgydnTRdX2UKGgGR0Bxk7GVAzHkaAdL+2gIR0CbgWXLNfPYdX2UKGgGR0Bwvodfb9IgaAdL/WgIR0CbgZvStvGZdX2UKGgGR0Bw6jovBacJaAdL42gIR0CbggqYJE6UdX2UKGgGR0BziELBsQ/YaAdL7mgIR0CbgkXNC7btdX2UKGgGR0BxUZsP8Q7LaAdNHwFoCEdAm4JoDoyKvXV9lChoBkdAc9TTXrdFfGgHS+FoCEdAm4LyApazNXV9lChoBkdAcfXLkjopx2gHTSgBaAhHQJuD1PTG5tp1fZQoaAZHQHF4qhxo7FNoB0vlaAhHQJuENfE4vOB1fZQoaAZHQHKCEd3jdYZoB00AAWgIR0CbhHHmig01dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3e279a0e6752d5ad4718e713b5185b9f1ac91c100d3b50886ceec492498baff0
3
- size 144020
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e93a8f145a5f7054ae5a80751e0da9f1719ed9c98eb7b485a1580aab13190c9
3
+ size 148008
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.5.0
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data CHANGED
@@ -3,60 +3,35 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcd44950950>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcd449509e0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcd44950a70>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcd44950b00>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fcd44950b90>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fcd44950c20>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcd44950cb0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fcd44950d40>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcd44950dd0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcd44950e60>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcd44950ef0>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fcd4492c060>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
- "observation_space": {
24
- ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
- "dtype": "float32",
27
- "_shape": [
28
- 8
29
- ],
30
- "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
- "high": "[inf inf inf inf inf inf inf inf]",
32
- "bounded_below": "[False False False False False False False False]",
33
- "bounded_above": "[False False False False False False False False]",
34
- "_np_random": null
35
- },
36
- "action_space": {
37
- ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
- "n": 4,
40
- "_shape": [],
41
- "dtype": "int64",
42
- "_np_random": null
43
- },
44
- "n_envs": 16,
45
- "num_timesteps": 507904,
46
- "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1652610545.9186769,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
- "lr_schedule": {
54
- ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
- },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI1Ber4R0TK9nVmlvM8fU7ull5s+X2gYPAAAgD8AAIA/Mzf5vEiZoroWGs45oJaNNUe37rriNu64AACAPwAAgD8apx0+vKd4PwGzhD6/utG+OJxNPk2IWT0AAAAAAAAAAOYk970g4Ys+WDPGvZuHG754iMS9vNAmvAAAAAAAAAAAMLiqviMhyj4Kh888TB3SvqVubD6ytEy9AAAAAAAAAACahAC91xNxuYD7FTtJMb81LQ0OvE7uMboAAIA/AACAPyZmJT4FAbW7sfOSOzMnXLk5kBW9mLI5ugAAgD8AAIA/82bIvh/C77ueeg24JnjgNVwpob2Ij0U3AACAPwAAgD9zGJO9Pap4OqVhwzuR5yo9mGzsO80nbz0AAAAAAAAAAJpvvLx7Pra6sVdEO6ZgmDZ1JX65vjRgugAAgD8AAIA/kxYVvoVXhLsCpTg7BUisOHHJyTzJtAK6AACAPwAAgD9mZaa99gRfuvZkgDoVTdA1kMwZujLflrkAAIA/AACAP1qVTr4qLtI+VU+zu/yqmb60B249ekZiPQAAAAAAAAAAM/+IOxTOkLoB7Jo67xF2NT+JJ7vUwLO5AACAPwAAgD/NDJS89rwxuj/ro7uDM504fbTJuv1iDjkAAIA/AACAP/NN+j2W/xo9qtPsvcZyi76UXtO92J9svQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,16 +41,42 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
 
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8Il1qnzYZECUhpRSlIwBbJRN6AOMAXSUR0CQl9GO+7DmdX2UKGgGaAloD0MIV17yP/krKcCUhpRSlGgVS6poFkdAkJfyQPqcE3V9lChoBmgJaA9DCMdnsn8eDGBAlIaUUpRoFU3oA2gWR0CQmKsniNsFdX2UKGgGaAloD0MIQSrFjsYaXkCUhpRSlGgVTegDaBZHQJCbOWTot+V1fZQoaAZoCWgPQwhftMcL6YReQJSGlFKUaBVN6ANoFkdAkJ2tsSCe3HV9lChoBmgJaA9DCDE/NzRlp9I/lIaUUpRoFUvcaBZHQJCkguxrzoV1fZQoaAZoCWgPQwjsLlBSYEJeQJSGlFKUaBVN6ANoFkdAkK52DDjzZ3V9lChoBmgJaA9DCA8MIHwodmRAlIaUUpRoFU3oA2gWR0CQrrEIw/PgdX2UKGgGaAloD0MIB33p7c+lX0CUhpRSlGgVTegDaBZHQJCvifzz3AV1fZQoaAZoCWgPQwh9CRUcXqddQJSGlFKUaBVN6ANoFkdAkLPnQyAQQXV9lChoBmgJaA9DCCUfuwuUlktAlIaUUpRoFU3oA2gWR0CQuxLOAy2ydX2UKGgGaAloD0MIH2Yv207zKECUhpRSlGgVS+hoFkdAkL4jXrdFfHV9lChoBmgJaA9DCPYHym37c19AlIaUUpRoFU3oA2gWR0CQwxPn0TURdX2UKGgGaAloD0MIWmPQCaG/X0CUhpRSlGgVTegDaBZHQJDFI52hZhd1fZQoaAZoCWgPQwhMw/ARsY9lQJSGlFKUaBVN6ANoFkdAkOBKOo5xR3V9lChoBmgJaA9DCAcpeAq5RjRAlIaUUpRoFU0HAWgWR0CQ4Qje9Ba+dX2UKGgGaAloD0MIw552+OtMZUCUhpRSlGgVTegDaBZHQJDjRYvFm4B1fZQoaAZoCWgPQwjxEpz6QF1hQJSGlFKUaBVN6ANoFkdAkOvBplBhQXV9lChoBmgJaA9DCJGdt7HZ5GNAlIaUUpRoFU3oA2gWR0CQ7X64Ds+ndX2UKGgGaAloD0MIINPaNLZxWECUhpRSlGgVTegDaBZHQJDtoRFqi491fZQoaAZoCWgPQwi70jJSb8tlQJSGlFKUaBVN6ANoFkdAkO4+k56t1nV9lChoBmgJaA9DCHgJTn0gGWBAlIaUUpRoFU3oA2gWR0CQ8OubZvkzdX2UKGgGaAloD0MI/u+ICtX1YkCUhpRSlGgVTegDaBZHQJDzNDPWxyJ1fZQoaAZoCWgPQwh47dKGw4JBQJSGlFKUaBVLvWgWR0CQ93qqOtGNdX2UKGgGaAloD0MIokPgSKAxX0CUhpRSlGgVTegDaBZHQJD4x1W8yvd1fZQoaAZoCWgPQwgxI7w9CEdiQJSGlFKUaBVN6ANoFkdAkQEMJIDoyXV9lChoBmgJaA9DCORJ0jWTBFlAlIaUUpRoFU3oA2gWR0CRAUjNY8uBdX2UKGgGaAloD0MIGGAfnTqdYkCUhpRSlGgVTegDaBZHQJEF0Mw1zhh1fZQoaAZoCWgPQwjzc0NTdoIjwJSGlFKUaBVL4WgWR0CRD3dszl90dX2UKGgGaAloD0MI/67PnPVTSkCUhpRSlGgVTegDaBZHQJERIUJv5xl1fZQoaAZoCWgPQwhWgzC3expeQJSGlFKUaBVN6ANoFkdAkRWzHCGetnV9lChoBmgJaA9DCIgSLXk8vFlAlIaUUpRoFU3oA2gWR0CRF6jm0VrRdX2UKGgGaAloD0MIRbjJqDIaW0CUhpRSlGgVTegDaBZHQJEv4rEtNBZ1fZQoaAZoCWgPQwi/nNmu0MFgQJSGlFKUaBVN6ANoFkdAkTCtOZb6g3V9lChoBmgJaA9DCKRTVz7LXF1AlIaUUpRoFU3oA2gWR0CRMsU83dbgdX2UKGgGaAloD0MIVtRgGoZNXkCUhpRSlGgVTegDaBZHQJE6zf/FR511fZQoaAZoCWgPQwh6/rRRnTNhQJSGlFKUaBVN6ANoFkdAkTyKEeyRjnV9lChoBmgJaA9DCL9k48EWr2JAlIaUUpRoFU3oA2gWR0CRPUGorFwUdX2UKGgGaAloD0MIeeblsPueIcCUhpRSlGgVTQQBaBZHQJFAB75VOsV1fZQoaAZoCWgPQwiE1VjC2q1eQJSGlFKUaBVN6ANoFkdAkUAw/xDst3V9lChoBmgJaA9DCHKlngUhBmVAlIaUUpRoFU3oA2gWR0CRQpWjXWe6dX2UKGgGaAloD0MIMEymCkb5YECUhpRSlGgVTegDaBZHQJFG5zgdfb91fZQoaAZoCWgPQwgPmIdM+dNgQJSGlFKUaBVN6ANoFkdAkUgqhQFcIXV9lChoBmgJaA9DCPTg7qzdnizAlIaUUpRoFUvlaBZHQJFJIOhCdBl1fZQoaAZoCWgPQwikwthCEBdoQJSGlFKUaBVN6AFoFkdAkUy+WSlnAnV9lChoBmgJaA9DCKHZdW/F0WNAlIaUUpRoFU3oA2gWR0CRT36EJ0GNdX2UKGgGaAloD0MIOUIG8uy4V0CUhpRSlGgVTegDaBZHQJFTU2wV0tB1fZQoaAZoCWgPQwh2U8prpb9rQJSGlFKUaBVNtwFoFkdAkVc8ophF3XV9lChoBmgJaA9DCBlVhnE3UDJAlIaUUpRoFUvHaBZHQJFaYv0yxiZ1fZQoaAZoCWgPQwjL2TujLcNiQJSGlFKUaBVN6ANoFkdAkVu88TzunnV9lChoBmgJaA9DCO/hkuNOE2FAlIaUUpRoFU3oA2gWR0CRXSzeoDPodX2UKGgGaAloD0MIW9B7Ywj8MkCUhpRSlGgVS39oFkdAkV6ZtWMjvHV9lChoBmgJaA9DCApq+BbWwVhAlIaUUpRoFU3oA2gWR0CRYS2itaIOdX2UKGgGaAloD0MINpIE4QrPYECUhpRSlGgVTegDaBZHQJFix7a7EpB1fZQoaAZoCWgPQwgWFtwPeJg4QJSGlFKUaBVLpGgWR0CRZitPYWcjdX2UKGgGaAloD0MIhbTGoBNMVUCUhpRSlGgVTegDaBZHQJGAC3EyckN1fZQoaAZoCWgPQwjLLEKxlbNgQJSGlFKUaBVN6ANoFkdAkYf557gKnnV9lChoBmgJaA9DCEwbDksDFyHAlIaUUpRoFUvtaBZHQJGJ2tknTiN1fZQoaAZoCWgPQwhDVrd6TtpfQJSGlFKUaBVN6ANoFkdAkYqWWpqASXV9lChoBmgJaA9DCJIf8SvWbWRAlIaUUpRoFU3oA2gWR0CRjXq5byH3dX2UKGgGaAloD0MIe0ljtI4bVkCUhpRSlGgVTegDaBZHQJGQPFaSs8x1fZQoaAZoCWgPQwg0oUliSYVbQJSGlFKUaBVN6ANoFkdAkZUufAbhnHV9lChoBmgJaA9DCPxwkBDlIz1AlIaUUpRoFUvGaBZHQJGWoCEHt4R1fZQoaAZoCWgPQwh16PS8G+lZQJSGlFKUaBVN6ANoFkdAkZajziCJ43V9lChoBmgJaA9DCHztmSUBhGBAlIaUUpRoFU3oA2gWR0CRl5/gzguRdX2UKGgGaAloD0MI+Wncm98cN8CUhpRSlGgVS/FoFkdAkZg7xAjY7XV9lChoBmgJaA9DCNUHkncO0TjAlIaUUpRoFUvEaBZHQJGZB4KQaJh1fZQoaAZoCWgPQwhiEcMOYy4xQJSGlFKUaBVLtmgWR0CRmqq1w5vMdX2UKGgGaAloD0MIWTZzSGpxYUCUhpRSlGgVTegDaBZHQJGbMc2itaJ1fZQoaAZoCWgPQwiQMuIC0CAlQJSGlFKUaBVLxWgWR0CRoEcaOxSpdX2UKGgGaAloD0MIbLOxEvM6SUCUhpRSlGgVS+NoFkdAkaChu89Oh3V9lChoBmgJaA9DCPyqXKj8u2FAlIaUUpRoFU3oA2gWR0CRoTfzz3AVdX2UKGgGaAloD0MIGQCquHGjQkCUhpRSlGgVS89oFkdAkaJKIN3GGXV9lChoBmgJaA9DCFt7n6pCJGBAlIaUUpRoFU3oA2gWR0CRqCJIUahpdX2UKGgGaAloD0MIpwhwepdlZECUhpRSlGgVTegDaBZHQJGpXK9wm3R1fZQoaAZoCWgPQwj2Yign2mUnQJSGlFKUaBVLs2gWR0CRqfi+cpb2dX2UKGgGaAloD0MIpyVWRqO/Y0CUhpRSlGgVTegDaBZHQJGr28kD6nB1fZQoaAZoCWgPQwjRItv5fkFiQJSGlFKUaBVN6ANoFkdAka4dpEhJRXV9lChoBmgJaA9DCOeoo+NqyDpAlIaUUpRoFUv2aBZHQJGvVlJ6IFh1fZQoaAZoCWgPQwiK52wBIV5jQJSGlFKUaBVN6ANoFkdAka+MIzFdcHV9lChoBmgJaA9DCGqme53UIVBAlIaUUpRoFUu6aBZHQJGzMUEgW8B1fZQoaAZoCWgPQwjL12X4T05UQJSGlFKUaBVN6ANoFkdAkcl3CKrJbXV9lChoBmgJaA9DCFIq4Qk90mRAlIaUUpRoFU3oA2gWR0CR0lAtnPE9dX2UKGgGaAloD0MIrMq+K4L7SUCUhpRSlGgVS8RoFkdAkeCM1wYLs3V9lChoBmgJaA9DCJUp5iDoxFtAlIaUUpRoFU3oA2gWR0CR5Bpjc2zfdX2UKGgGaAloD0MI4Qm9/iStV0CUhpRSlGgVTegDaBZHQJHllVktmL91fZQoaAZoCWgPQwik4v+OqIlWQJSGlFKUaBVN6ANoFkdAkeeabSZ0CHV9lChoBmgJaA9DCA5KmGl7fmJAlIaUUpRoFU3oA2gWR0CR6ZayrxRVdX2UKGgGaAloD0MIw5/hzRoOUECUhpRSlGgVTegDaBZHQJHqPtMPBi11fZQoaAZoCWgPQwjH8UOlEfsvQJSGlFKUaBVLxmgWR0CR7hNm16VudX2UKGgGaAloD0MIS+ZY3tXHZkCUhpRSlGgVTegDaBZHQJHw0BBAv+R1fZQoaAZoCWgPQwjfF5eqtOBaQJSGlFKUaBVN6ANoFkdAkfF1FlTWG3V9lChoBmgJaA9DCBTObi2TITJAlIaUUpRoFUuyaBZHQJHzg7hegL91fZQoaAZoCWgPQwhlFwyuObBgQJSGlFKUaBVN6ANoFkdAkfhA3kxREXV9lChoBmgJaA9DCEN0CBwJKF1AlIaUUpRoFU3oA2gWR0CR+Y2oegctdX2UKGgGaAloD0MIqYb9nlimY0CUhpRSlGgVTegDaBZHQJH8cCcPOIJ1fZQoaAZoCWgPQwjaAGxAhFldQJSGlFKUaBVN6ANoFkdAkf8Hs9jgAXV9lChoBmgJaA9DCKORzyseFWRAlIaUUpRoFU3oA2gWR0CSAHbh3qzJdX2UKGgGaAloD0MItyizQSb+XECUhpRSlGgVTegDaBZHQJIAtmmLtNV1fZQoaAZoCWgPQwi6Z12j5W5gQJSGlFKUaBVN6ANoFkdAkgSDG96C2HVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 124,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -86,9 +87,13 @@
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
93
- "target_kl": null
 
 
 
 
94
  }
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78bb5df9f6d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78bb5df9f760>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78bb5df9f7f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78bb5df9f880>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78bb5df9f910>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78bb5df9f9a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78bb5df9fa30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78bb5df9fac0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78bb5df9fb50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78bb5df9fbe0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78bb5df9fc70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78bb5df9fd00>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78bb5df50680>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1507328,
25
+ "_total_timesteps": 1500000,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1727718202313332487,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
 
 
 
 
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpP8Txxq1u7Fg3ZO17rxjtMr3O8Qiu4PAAAgD8AAIA/YGRXvur7Hj+L6O8+dteNvj3l3z3r3pM+AAAAAAAAAACA+Wm9bnfDPpHunL7TUNO+SeqsvrwZtzsAAAAAAAAAAM0t1rzirb4+uObSPW5Nhb5kotw9rvemuwAAAAAAAAAADZ1LvkW2DT+5+Jg+W92BvgZemr1JdJE+AAAAAAAAAADN6Tu9comkPgp6Ijw9Ypa+t8jSPAIQUb4AAAAAAAAAAADyOb0oB4U+sl70PLrUoL6lT7m93oQEPQAAAAAAAAAA5sEFvWxNmT5XzoI7NU2kviaD07n13zc9AAAAAAAAAAAz8XI8QI+uPj3neTt7PLe+VR8lvEszjz0AAAAAAAAAAJqZNbn2fES6iwD1tvo+2bH/bSK6kxoSNgAAgD8AAIA/5lwHPYJ9mj+NhuQ9HtO9vkINwT1Woo49AAAAAAAAAAAAgPO6XOtuujX+RbNflhAw9guFur5+yjMAAIA/AACAPzMDhryu7cK6Z5atu5OKLzyHrFG7PVMdPQAAgD8AAIA/ZobDu2yhjT+Gxqe9zuHJviTKkDsAAHu9AAAAAAAAAAAz89+6BR7Ru1PQg7vn2KU8bcsnPZQPi70AAIA/AACAP40OGT7Wt5A/IhWcPlb5wL4S26Q+8NhZPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
+ "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7mfiPyTZCMAWyUS/SMAXSUR0CbSg2aUiY+dX2UKGgGR0Bzd7RhMJyAaAdL8GgIR0CbSosJIDoydX2UKGgGR0BxGZmukk8iaAdL7mgIR0CbSxe4kNWmdX2UKGgGR0BwlrpbD/EPaAdL8GgIR0CbS3dMCcPOdX2UKGgGR0BxeHCwbEP2aAdNIAFoCEdAm0u0K/mDDnV9lChoBkdAbyn0K7ZnMGgHTQgBaAhHQJtLvgWJrL11fZQoaAZHQHKGp7LMcIZoB00NAWgIR0CbTFPO6d1/dX2UKGgGR0BwVxupCKJmaAdNBgFoCEdAm0yHVLBbfXV9lChoBkdAcScjk+5e7mgHTREBaAhHQJtMz8uSOip1fZQoaAZHQHFF0ihWYF9oB0v1aAhHQJtNMbHZK4B1fZQoaAZHQHBNBRhttQ9oB0vyaAhHQJtNX5/LDAJ1fZQoaAZHQFL1+u/1xsFoB0uiaAhHQJtNby6MBIZ1fZQoaAZHQHHGob0e2eBoB0vsaAhHQJtOVbkfcN91fZQoaAZHQHIlcFdLQHBoB00CAWgIR0CbTlH7xd6cdX2UKGgGR0BzCZdGAkLQaAdNWAFoCEdAm093Kr7wa3V9lChoBkdAcSLQ2uPmxWgHTQcBaAhHQJtQo68xsVN1fZQoaAZHQG/jqTbFjutoB0v4aAhHQJtQyGUOd5J1fZQoaAZHQHFOaRZEDyRoB00aAWgIR0CbURzHS4OMdX2UKGgGR0BwTfJV81GcaAdL+GgIR0CbUa4VARkFdX2UKGgGR0ByNCHrQgLaaAdL+2gIR0CbUgzQeFL4dX2UKGgGR0BvA98b70nPaAdNFAFoCEdAm1IY1k1/D3V9lChoBkdAcJ5ySV4X42gHTREBaAhHQJtSkZ4wAVB1fZQoaAZHQHACnDNyHVRoB0v7aAhHQJtSpvwVj7R1fZQoaAZHQHIa7RnezldoB00VAWgIR0CbU2m8ujASdX2UKGgGR0BxrG6H0se5aAdL8WgIR0CbU3ujASFodX2UKGgGR0BzNcBsANobaAdNAgFoCEdAm1OkeQuEmXV9lChoBkdAcNuPWQOnVGgHS/1oCEdAm1O1AAyVOnV9lChoBkdAb8gN4JNTLmgHTSUBaAhHQJtUDhqCYkV1fZQoaAZHQHEmqEOAiFFoB00PAWgIR0CbVSJQ+EAYdX2UKGgGR0BweMaKk2xZaAdL7GgIR0CbVW20AtFsdX2UKGgGR0BwxS/1xsEaaAdNJAFoCEdAm1Wd6w+t83V9lChoBkdAcmsS4e9zwWgHS9toCEdAm1YG0zCUHXV9lChoBkdAcpkIIWxhUmgHS+NoCEdAm1ZSSJTESHV9lChoBkdAcX7jYI0IkmgHS/5oCEdAm2wij1wo9nV9lChoBkdAUbBZLZi/f2gHS7poCEdAm2xH8jzI3nV9lChoBkdAcC8bobGWEGgHS/toCEdAm2yEfT1CgXV9lChoBkdAUmzc8DB/JGgHS6toCEdAm2ydFz+3pnV9lChoBkdAciDCaZx7zGgHTS0BaAhHQJts7YdyT6l1fZQoaAZHQHA3plJ6IFhoB00dAWgIR0CbbXUahpQDdX2UKGgGR0BwbHZM+NcXaAdNFgFoCEdAm23aN6w+uHV9lChoBkdAcay47ihnJ2gHS+ZoCEdAm23eMuOCG3V9lChoBkdAcU19Sde6Z2gHTRQBaAhHQJtt5rHlwLp1fZQoaAZHQHNOj4tYjjdoB0vzaAhHQJtt5edCmdl1fZQoaAZHQHEuufdyksVoB00KAWgIR0CbbpVlwtJ4dX2UKGgGR0BvBpE0BOpLaAdL7WgIR0Cbb2H2AXl9dX2UKGgGR0BxXNSDRMN+aAdL+GgIR0Cbb/hYeT3ZdX2UKGgGR0ByHFigCfYjaAdL52gIR0CbcC3qzJIUdX2UKGgGR0Bxlt29tdiVaAdL4GgIR0CbcFAeJYT1dX2UKGgGR0Bx7QAiml67aAdNMAFoCEdAm3FwJswcpHV9lChoBkdAcpfOH31zyWgHS+poCEdAm3IDz3AVPHV9lChoBkdActa2cJ+lTGgHS+ZoCEdAm3IKaG5+Y3V9lChoBkdAcUOk8Rtgr2gHS/VoCEdAm3KelTFVDXV9lChoBkdAbtcIomXw9mgHS+doCEdAm3OEALiMpHV9lChoBkdAcm7zmwJPZmgHS/VoCEdAm3PuEh7mdXV9lChoBkdAcftqc3EQ5GgHTQUBaAhHQJt0brVvuPV1fZQoaAZHQHGbP2K2rn1oB00zAWgIR0CbdH4MnZ00dX2UKGgGR0Bw1uqhlDneaAdNFwFoCEdAm3SG8yvcJ3V9lChoBkdAcESziS7oS2gHTRUBaAhHQJt01EZzgdh1fZQoaAZHQHNJ+EAYHgRoB005AWgIR0CbdOcm0E5idX2UKGgGR0Bx+VXlr/KhaAdL6WgIR0CbdVYsd1dPdX2UKGgGR0BwqCfL9uP4aAdNEQFoCEdAm3V3LidauHV9lChoBkdAcCJor4Fia2gHS/9oCEdAm3ZXAAQxvnV9lChoBkdAcsrdvbXYlWgHTQEBaAhHQJt2uVpsXSB1fZQoaAZHQHF38VLzwttoB00NAWgIR0Cbdt4PwuuidX2UKGgGR0BzX0Fiay8jaAdL3WgIR0CbdwpJPIn0dX2UKGgGR0Bu2xnOB19waAdL+GgIR0CbeDebutwKdX2UKGgGR0Bwhhalk6LgaAdNBAFoCEdAm3iDUiILxHV9lChoBkdAb8Q1CPZIx2gHTQYBaAhHQJt5KvfTCtR1fZQoaAZHQHNdYuK4x1xoB0vnaAhHQJt5jrv9cbB1fZQoaAZHQHDheN96TntoB0vpaAhHQJt6FXU6PsB1fZQoaAZHQHGFcY64lQdoB00KAWgIR0CbeiAi3XqadX2UKGgGR0ByN0Vgx8D0aAdL9GgIR0CbemV8kUsWdX2UKGgGR0Bu/FRaX8fnaAdNAAFoCEdAm3q8TN+so3V9lChoBkdAcgISVnmJWWgHTQ8BaAhHQJt7bLzPKMh1fZQoaAZHQHI0ufukUK1oB0v0aAhHQJt7dJCjUNN1fZQoaAZHQG0ghGx2SuBoB0v/aAhHQJt7lFUhmoR1fZQoaAZHQHMqzVlPJq9oB00UAWgIR0Cbe5vzvqkedX2UKGgGR0Bx3cWM0gr6aAdL2mgIR0Cbe7/oJRfndX2UKGgGR0BzUD/CIk7faAdL5mgIR0CbfG3bVSXMdX2UKGgGR0BydqCZnctYaAdL7mgIR0CbfHnm7rcCdX2UKGgGR0Byj11eSjgyaAdL6WgIR0CbfKLa24NJdX2UKGgGR0BT951zQu27aAdLlGgIR0CbfVyDIzWPdX2UKGgGR0BzDNkVeruIaAdL7WgIR0CbfiKqGUOedX2UKGgGR0BxMVvsJIDpaAdNCgFoCEdAm36VEZzgdnV9lChoBkdAcG64uscQy2gHS+9oCEdAm382WD6Fd3V9lChoBkdAV0JokAxSHmgHS5poCEdAm39J9uxbCHV9lChoBkdAcTGCDmKZUmgHS+poCEdAm3+gUUO/cnV9lChoBkdAcXjbp/wy7GgHS+poCEdAm3/s3Q2MsHV9lChoBkdAcCZv4M4LkWgHTR0BaAhHQJuABr/Khct1fZQoaAZHQHJ365f+judoB0vxaAhHQJuBHBciW3V1fZQoaAZHQG+KTxPO6d1oB00WAWgIR0CbgVgydnTRdX2UKGgGR0Bxk7GVAzHkaAdL+2gIR0CbgWXLNfPYdX2UKGgGR0Bwvodfb9IgaAdL/WgIR0CbgZvStvGZdX2UKGgGR0Bw6jovBacJaAdL42gIR0CbggqYJE6UdX2UKGgGR0BziELBsQ/YaAdL7mgIR0CbgkXNC7btdX2UKGgGR0BxUZsP8Q7LaAdNHwFoCEdAm4JoDoyKvXV9lChoBkdAc9TTXrdFfGgHS+FoCEdAm4LyApazNXV9lChoBkdAcfXLkjopx2gHTSgBaAhHQJuD1PTG5tp1fZQoaAZHQHF4qhxo7FNoB0vlaAhHQJuENfE4vOB1fZQoaAZHQHKCEd3jdYZoB00AAWgIR0CbhHHmig01dWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 368,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
 
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:35cf02b1aa2bbd038bd149efd48573164b5ee555a28d4c4ff1b27427f9d69fd6
3
- size 84829
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09f982b9cb978033e1acce23d47f570a4b4e2925623ad909854ad762e00454e9
3
+ size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:574f4d945490287d8b26d9e4c3c200402e816c36872451fa8c6660fa0cfb6e2d
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28efabbc27799d007717cadbaeaca5298b3049aae80de402105f4b9530a15e36
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
- size 431
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,9 @@
1
- OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
- Python: 3.7.13
3
- Stable-Baselines3: 1.5.0
4
- PyTorch: 1.11.0+cu113
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:83d3eaeb5ef76450d90e5f61943fe214936f9641ce3eace2f060ea42036809a0
3
- size 238286
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4794539bebf50a3214dada6ed952d3570d6665df0432959630c06313c4b1e8b0
3
+ size 166755
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 268.4813107620365, "std_reward": 20.244163154165335, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-15T12:40:49.354642"}
 
1
+ {"mean_reward": 271.0488843, "std_reward": 18.17616812308383, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-30T18:18:20.563026"}