Update README.md
Browse files
README.md
CHANGED
@@ -2,4 +2,212 @@
|
|
2 |
base_model:
|
3 |
- LiquidAI/LFM2-1.2B
|
4 |
library_name: transformers.js
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
base_model:
|
3 |
- LiquidAI/LFM2-1.2B
|
4 |
library_name: transformers.js
|
5 |
+
license: other
|
6 |
+
license_name: lfm1.0
|
7 |
+
license_link: LICENSE
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
- ar
|
11 |
+
- zh
|
12 |
+
- fr
|
13 |
+
- de
|
14 |
+
- ja
|
15 |
+
- ko
|
16 |
+
- es
|
17 |
+
pipeline_tag: text-generation
|
18 |
+
tags:
|
19 |
+
- liquid
|
20 |
+
- edge
|
21 |
+
---
|
22 |
+
|
23 |
+
|
24 |
+
<center>
|
25 |
+
<div style="text-align: center;">
|
26 |
+
<img
|
27 |
+
src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/7_6D7rWrLxp2hb6OHSV1p.png"
|
28 |
+
alt="Liquid AI"
|
29 |
+
style="width: 100%; max-width: 66%; height: auto; display: inline-block; margin-bottom: 0.5em; margin-top: 0.5em;"
|
30 |
+
/>
|
31 |
+
</div>
|
32 |
+
|
33 |
+
<a href="https://playground.liquid.ai/chat">
|
34 |
+
<svg width="114.8" height="20" viewBox="0 0 1300 200" xmlns="http://www.w3.org/2000/svg" role="img" aria-label="Liquid Playground" style="margin-bottom: 1em;">
|
35 |
+
<title>Liquid: Playground</title>
|
36 |
+
<g>
|
37 |
+
<rect fill="#fff" width="600" height="200"></rect>
|
38 |
+
<rect fill="url(#x)" x="600" width="700" height="200"></rect>
|
39 |
+
</g>
|
40 |
+
<g transform="translate(20, 30) scale(0.4, 0.4)">
|
41 |
+
<path d="M172.314 129.313L172.219 129.367L206.125 188.18C210.671 195.154 213.324 203.457 213.324 212.382C213.324 220.834 210.956 228.739 206.839 235.479L275.924 213.178L167.853 33.6L141.827 76.9614L172.314 129.313Z" fill="black"/>
|
42 |
+
<path d="M114.217 302.4L168.492 257.003C168.447 257.003 168.397 257.003 168.352 257.003C143.515 257.003 123.385 237.027 123.385 212.387C123.385 203.487 126.023 195.204 130.55 188.24L162.621 132.503L135.966 86.7327L60.0762 213.183L114.127 302.4H114.217Z" fill="black"/>
|
43 |
+
<path d="M191.435 250.681C191.435 250.681 191.43 250.681 191.425 250.686L129.71 302.4H221.294L267.71 226.593L191.435 250.686V250.681Z" fill="black"/>
|
44 |
+
</g>
|
45 |
+
<g aria-hidden="true" fill="#fff" text-anchor="start" font-family="Verdana,DejaVu Sans,sans-serif" font-size="110">
|
46 |
+
<text x="200" y="148" textLength="329" fill="#000" opacity="0.1">Liquid</text>
|
47 |
+
<text x="190" y="138" textLength="329" fill="#000">Liquid</text>
|
48 |
+
<text x="655" y="148" textLength="619" fill="#000" opacity="0.1">Playground</text>
|
49 |
+
<text x="645" y="138" textLength="619">Playground</text>
|
50 |
+
</g>
|
51 |
+
|
52 |
+
<linearGradient id="x" x1="0%" y1="0%" x2="100%" y2="0%">
|
53 |
+
<stop offset="0%" style="stop-color:#000000"></stop>
|
54 |
+
<stop offset="100%" style="stop-color:#000000"></stop>
|
55 |
+
</linearGradient>
|
56 |
+
</svg>
|
57 |
+
</a>
|
58 |
+
</center>
|
59 |
+
|
60 |
+
# LFM2-1.2B
|
61 |
+
|
62 |
+
LFM2 is a new generation of hybrid models developed by [Liquid AI](https://www.liquid.ai/), specifically designed for edge AI and on-device deployment. It sets a new standard in terms of quality, speed, and memory efficiency.
|
63 |
+
|
64 |
+
We're releasing the weights of three post-trained checkpoints with 350M, 700M, and 1.2B parameters. They provide the following key features to create AI-powered edge applications:
|
65 |
+
|
66 |
+
* **Fast training & inference** β LFM2 achieves 3x faster training compared to its previous generation. It also benefits from 2x faster decode and prefill speed on CPU compared to Qwen3.
|
67 |
+
* **Best performance** β LFM2 outperforms similarly-sized models across multiple benchmark categories, including knowledge, mathematics, instruction following, and multilingual capabilities.
|
68 |
+
* **New architecture** β LFM2 is a new hybrid Liquid model with multiplicative gates and short convolutions.
|
69 |
+
* **Flexible deployment** β LFM2 runs efficiently on CPU, GPU, and NPU hardware for flexible deployment on smartphones, laptops, or vehicles.
|
70 |
+
|
71 |
+
Find more information about LFM2 in our [blog post](https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models).
|
72 |
+
|
73 |
+
## π Model details
|
74 |
+
|
75 |
+
Due to their small size, **we recommend fine-tuning LFM2 models on narrow use cases** to maximize performance.
|
76 |
+
They are particularly suited for agentic tasks, data extraction, RAG, creative writing, and multi-turn conversations.
|
77 |
+
However, we do not recommend using them for tasks that are knowledge-intensive or require programming skills.
|
78 |
+
|
79 |
+
| Property | Value |
|
80 |
+
| ------------------- | ----------------------------- |
|
81 |
+
| **Parameters** | 742,489,344 |
|
82 |
+
| **Layers** | 16 (10 conv + 6 attn) |
|
83 |
+
| **Context length** | 32,768 tokens |
|
84 |
+
| **Vocabulary size** | 65,536 |
|
85 |
+
| **Precision** | bfloat16 |
|
86 |
+
| **Training budget** | 10 trillion tokens |
|
87 |
+
| **License** | LFM Open License v1.0 |
|
88 |
+
|
89 |
+
**Supported languages**: English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish.
|
90 |
+
|
91 |
+
**Generation parameters**: We recommend the following parameters:
|
92 |
+
* `temperature=0.3`
|
93 |
+
* `min_p=0.15`
|
94 |
+
* `repetition_penalty=1.05`
|
95 |
+
|
96 |
+
**Architecture**: Hybrid model with multiplicative gates and short convolutions: 10 double-gated short-range LIV convolution blocks and 6 grouped query attention (GQA) blocks.
|
97 |
+
|
98 |
+
**Pre-training mixture**: Approximately 75% English, 20% multilingual, and 5% code data sourced from the web and licensed materials.
|
99 |
+
|
100 |
+
**Training approach**:
|
101 |
+
* Knowledge distillation using [LFM1-7B](https://www.liquid.ai/blog/introducing-lfm-7b-setting-new-standards-for-efficient-language-models) as teacher model
|
102 |
+
* Very large-scale SFT on 50% downstream tasks, 50% general domains
|
103 |
+
* Custom DPO with length normalization and semi-online datasets
|
104 |
+
* Iterative model merging
|
105 |
+
|
106 |
+
## π How to run LFM2
|
107 |
+
|
108 |
+
### Transformers.js
|
109 |
+
|
110 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
111 |
+
```bash
|
112 |
+
npm i @huggingface/transformers
|
113 |
+
```
|
114 |
+
|
115 |
+
You can then generate text as follows:
|
116 |
+
```js
|
117 |
+
import { pipeline, TextStreamer } from "@huggingface/transformers";
|
118 |
+
|
119 |
+
// Create a text generation pipeline
|
120 |
+
const generator = await pipeline(
|
121 |
+
"text-generation",
|
122 |
+
"onnx-community/LFM2-1.2B-ONNX",
|
123 |
+
{ dtype: "q4" },
|
124 |
+
);
|
125 |
+
|
126 |
+
// Define the list of messages
|
127 |
+
const messages = [
|
128 |
+
{ role: "system", content: "You are a helpful assistant." },
|
129 |
+
{ role: "user", content: "What is the capital of France?" },
|
130 |
+
];
|
131 |
+
|
132 |
+
// Generate a response
|
133 |
+
const output = await generator(messages, {
|
134 |
+
max_new_tokens: 512,
|
135 |
+
do_sample: false,
|
136 |
+
streamer: new TextStreamer(generator.tokenizer, { skip_prompt: true, skip_special_tokens: true}),
|
137 |
+
});
|
138 |
+
console.log(output[0].generated_text.at(-1).content);
|
139 |
+
// The capital of France is Paris.
|
140 |
+
```
|
141 |
+
|
142 |
+
### ONNXRuntime
|
143 |
+
|
144 |
+
```py
|
145 |
+
from transformers import AutoConfig, AutoTokenizer
|
146 |
+
import onnxruntime
|
147 |
+
import numpy as np
|
148 |
+
from huggingface_hub import hf_hub_download
|
149 |
+
|
150 |
+
# 1. Load config, processor, and model
|
151 |
+
model_id = "onnx-community/LFM2-1.2B-ONNX"
|
152 |
+
config = AutoConfig.from_pretrained(model_id)
|
153 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
154 |
+
filename = "model.onnx" # Options: "model.onnx", "model_fp16.onnx", "model_q4.onnx", "model_q4f16.onnx"
|
155 |
+
model_path = hf_hub_download(repo_id=model_id, filename=f"onnx/{filename}") # Download the graph
|
156 |
+
hf_hub_download(repo_id=model_id, filename=f"onnx/{filename}_data") # Download the weights
|
157 |
+
session = onnxruntime.InferenceSession(model_path)
|
158 |
+
|
159 |
+
## Set config values
|
160 |
+
num_key_value_heads = config.num_key_value_heads
|
161 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
162 |
+
num_hidden_layers = config.num_hidden_layers
|
163 |
+
eos_token_id = config.eos_token_id
|
164 |
+
hidden_size = config.hidden_size
|
165 |
+
conv_L_cache = config.conv_L_cache
|
166 |
+
layer_types = config.layer_types
|
167 |
+
|
168 |
+
# 2. Prepare inputs
|
169 |
+
prompt = "What is C. elegans?"
|
170 |
+
messages = [{"role": "user", "content": prompt}]
|
171 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="np")
|
172 |
+
input_ids = inputs['input_ids']
|
173 |
+
attention_mask = inputs['attention_mask']
|
174 |
+
batch_size = input_ids.shape[0]
|
175 |
+
position_ids = np.tile(np.arange(0, input_ids.shape[-1]), (batch_size, 1))
|
176 |
+
past_cache_values = {}
|
177 |
+
for i in range(num_hidden_layers):
|
178 |
+
if layer_types[i] == 'full_attention':
|
179 |
+
for kv in ('key', 'value'):
|
180 |
+
past_cache_values[f'past_key_values.{i}.{kv}'] = np.zeros([batch_size, num_key_value_heads, 0, head_dim], dtype=np.float32)
|
181 |
+
elif layer_types[i] == 'conv':
|
182 |
+
past_cache_values[f'past_conv.{i}'] = np.zeros([batch_size, hidden_size, conv_L_cache], dtype=np.float32)
|
183 |
+
else:
|
184 |
+
raise ValueError(f"Unsupported layer type: {layer_types[i]}")
|
185 |
+
|
186 |
+
# 3. Generation loop
|
187 |
+
max_new_tokens = 1024
|
188 |
+
generated_tokens = np.array([[]], dtype=np.int64)
|
189 |
+
for i in range(max_new_tokens):
|
190 |
+
logits, *present_cache_values = session.run(None, dict(
|
191 |
+
input_ids=input_ids,
|
192 |
+
attention_mask=attention_mask,
|
193 |
+
position_ids=position_ids,
|
194 |
+
**past_cache_values,
|
195 |
+
))
|
196 |
+
|
197 |
+
## Update values for next generation loop
|
198 |
+
input_ids = logits[:, -1].argmax(-1, keepdims=True)
|
199 |
+
attention_mask = np.concatenate([attention_mask, np.ones_like(input_ids, dtype=np.int64)], axis=-1)
|
200 |
+
position_ids = position_ids[:, -1:] + 1
|
201 |
+
for j, key in enumerate(past_cache_values):
|
202 |
+
past_cache_values[key] = present_cache_values[j]
|
203 |
+
generated_tokens = np.concatenate([generated_tokens, input_ids], axis=-1)
|
204 |
+
if (input_ids == eos_token_id).all():
|
205 |
+
break
|
206 |
+
|
207 |
+
## (Optional) Streaming
|
208 |
+
print(tokenizer.decode(input_ids[0]), end='', flush=True)
|
209 |
+
print()
|
210 |
+
|
211 |
+
# 4. Output result
|
212 |
+
print(tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0])
|
213 |
+
```
|