osanseviero Xenova HF Staff RyanMullins commited on
Commit
75a84c7
·
verified ·
0 Parent(s):

Super-squash branch 'main' using huggingface_hub

Browse files

Co-authored-by: Xenova <[email protected]>
Co-authored-by: RyanMullins <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ onnx/model.onnx_data filter=lfs diff=lfs merge=lfs -text
37
+ onnx/model_fp16.onnx_data filter=lfs diff=lfs merge=lfs -text
38
+ onnx/model_q4.onnx_data filter=lfs diff=lfs merge=lfs -text
39
+ onnx/model_q4f16.onnx_data filter=lfs diff=lfs merge=lfs -text
40
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
41
+ onnx/model_quantized.onnx_data filter=lfs diff=lfs merge=lfs -text
42
+ onnx/model_no_gather_q4.onnx_data filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ base_model:
4
+ - google/embeddinggemma-300M
5
+ pipeline_tag: sentence-similarity
6
+ library_name: transformers.js
7
+ ---
8
+
9
+ # EmbeddingGemma model card
10
+
11
+ **Model Page**: [EmbeddingGemma](https://ai.google.dev/gemma/docs/embeddinggemma)
12
+
13
+ **Resources and Technical Documentation**:
14
+
15
+ * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
16
+ * [EmbeddingGemma on Kaggle](https://www.kaggle.com/models/google/embeddinggemma/)
17
+ * [EmbeddingGemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/embeddinggemma)
18
+
19
+ **Terms of Use**: [Terms](https://ai.google.dev/gemma/terms)
20
+
21
+ **Authors**: Google DeepMind
22
+
23
+ ## Model Information
24
+
25
+ ### Description
26
+
27
+ EmbeddingGemma is a 300M parameter, state-of-the-art for its size, open embedding model from Google, built from Gemma 3 (with T5Gemma initialization) and the same research and technology used to create Gemini models. EmbeddingGemma produces vector representations of text, making it well-suited for search and retrieval tasks, including classification, clustering, and semantic similarity search. This model was trained with data in 100+ spoken languages.
28
+
29
+ The small size and on-device focus makes it possible to deploy in environments with limited resources such as mobile phones, laptops, or desktops, democratizing access to state of the art AI models and helping foster innovation for everyone.
30
+
31
+ ### Inputs and outputs
32
+
33
+ - **Input:**
34
+ - Text string, such as a question, a prompt, or a document to be embedded
35
+ - Maximum input context length of 2048 tokens
36
+
37
+ - **Output:**
38
+ - Numerical vector representations of input text data
39
+ - Output embedding dimension size of 768, with smaller options available (512, 256, or 128) via Matryoshka Representation Learning (MRL). MRL allows users to truncate the output embedding of size 768 to their desired size and then re-normalize for efficient and accurate representation.
40
+
41
+ ### Usage
42
+
43
+ These model weights are designed to be used with [Transformers.js](https://huggingface.co/docs/transformers.js/en/index).
44
+
45
+ **NOTE**: EmbeddingGemma activations do not support `float16` or its derivatives. Please use `float32`, `q8`, or `q4` as appropriate for your hardware.
46
+
47
+ #### Transformers.js in JavaScript
48
+
49
+ ```js
50
+ import { AutoModel, AutoTokenizer, matmul } from "@huggingface/transformers";
51
+
52
+ // Download from the 🤗 Hub
53
+ const model_id = "onnx-community/embeddinggemma-300M-ONNX";
54
+ const tokenizer = await AutoTokenizer.from_pretrained(model_id);
55
+ const model = await AutoModel.from_pretrained(model_id, {
56
+ dtype: "fp32", // Options: "fp32" | "q8" | "q4".
57
+ });
58
+
59
+ // Run inference with queries and documents
60
+ const prefixes = {
61
+ query: "task: search result | query: ",
62
+ document: "title: none | text: ",
63
+ };
64
+ const query = prefixes.query + "Which planet is known as the Red Planet?";
65
+ const documents = [
66
+ "Venus is often called Earth's twin because of its similar size and proximity.",
67
+ "Mars, known for its reddish appearance, is often referred to as the Red Planet.",
68
+ "Jupiter, the largest planet in our solar system, has a prominent red spot.",
69
+ "Saturn, famous for its rings, is sometimes mistaken for the Red Planet.",
70
+ ].map((x) => prefixes.document + x);
71
+
72
+ const inputs = await tokenizer([query, ...documents], { padding: true });
73
+ const { sentence_embedding } = await model(inputs);
74
+
75
+ // Compute similarities to determine a ranking
76
+ const scores = await matmul(sentence_embedding, sentence_embedding.transpose(1, 0));
77
+ const similarities = scores.tolist()[0].slice(1);
78
+ console.log(similarities);
79
+ // [ 0.30109718441963196, 0.6358831524848938, 0.4930494725704193, 0.48887503147125244 ]
80
+
81
+ // Convert similarities to a ranking
82
+ const ranking = similarities.map((score, index) => ({ index, score })).sort((a, b) => b.score - a.score);
83
+ console.log(ranking);
84
+ // [
85
+ // { index: 1, score: 0.6358831524848938 },
86
+ // { index: 2, score: 0.4930494725704193 },
87
+ // { index: 3, score: 0.48887503147125244 },
88
+ // { index: 0, score: 0.30109718441963196 }
89
+ // ]
90
+ ```
91
+
92
+ #### Using the ONNX Runtime in Python
93
+
94
+ ```py
95
+ from huggingface_hub import hf_hub_download
96
+ import onnxruntime as ort
97
+ from transformers import AutoTokenizer
98
+
99
+ # Download from the 🤗 Hub
100
+ model_id = "onnx-community/embeddinggemma-300M-ONNX"
101
+ model_path = hf_hub_download(model_id, subfolder="onnx", filename="model.onnx") # Download graph
102
+ hf_hub_download(model_id, subfolder="onnx", filename="model.onnx_data") # Download weights
103
+ session = ort.InferenceSession(model_path)
104
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
105
+
106
+ # Run inference with queries and documents
107
+ prefixes = {
108
+ "query": "task: search result | query: ",
109
+ "document": "title: none | text: ",
110
+ }
111
+ query = prefixes["query"] + "Which planet is known as the Red Planet?"
112
+ documents = [
113
+ "Venus is often called Earth's twin because of its similar size and proximity.",
114
+ "Mars, known for its reddish appearance, is often referred to as the Red Planet.",
115
+ "Jupiter, the largest planet in our solar system, has a prominent red spot.",
116
+ "Saturn, famous for its rings, is sometimes mistaken for the Red Planet."
117
+ ]
118
+ documents = [prefixes["document"] + x for x in documents]
119
+
120
+ inputs = tokenizer([query] + documents, padding=True, return_tensors="np")
121
+
122
+ _, sentence_embedding = session.run(None, inputs.data)
123
+ print(sentence_embedding.shape) # (5, 768)
124
+
125
+ # Compute similarities to determine a ranking
126
+ query_embeddings = sentence_embedding[0]
127
+ document_embeddings = sentence_embedding[1:]
128
+ similarities = query_embeddings @ document_embeddings.T
129
+ print(similarities) # [0.30109745 0.635883 0.49304956 0.48887485]
130
+
131
+ # Convert similarities to a ranking
132
+ ranking = similarities.argsort()[::-1]
133
+ print(ranking) # [1 2 3 0]
134
+ ```
135
+
136
+ ## Model Data
137
+
138
+ ### Training Dataset
139
+
140
+ This model was trained on a dataset of text data that includes a wide variety of sources totaling approximately 320 billion tokens. Here are the key components:
141
+
142
+ - **Web Documents**: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. The training dataset includes content in over 100 languages.
143
+ - **Code and Technical Documents**: Exposing the model to code and technical documentation helps it learn the structure and patterns of programming languages and specialized scientific content, which improves its understanding of code and technical questions.
144
+ - **Synthetic and Task-Specific Data**: Synthetically training data helps to teach the model specific skills. This includes curated data for tasks like information retrieval, classification, and sentiment analysis, which helps to fine-tune its performance for common embedding applications.
145
+
146
+ The combination of these diverse data sources is crucial for training a powerful multilingual embedding model that can handle a wide variety of different tasks and data formats.
147
+
148
+ ### Data Preprocessing
149
+
150
+ Here are the key data cleaning and filtering methods applied to the training data:
151
+
152
+ - CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content.
153
+ - Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets.
154
+ - Additional methods: Filtering based on content quality and safety in line with [our policies](https://ai.google/static/documents/ai-responsibility-update-published-february-2025.pdf).
155
+
156
+ ## Model Development
157
+
158
+ ### Hardware
159
+
160
+ EmbeddingGemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e), for more details refer to the [Gemma 3 model card](https://ai.google.dev/gemma/docs/core/model_card_3).
161
+
162
+ ### Software
163
+
164
+ Training was done using [JAX](https://github.com/jax-ml/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/). For more details refer to the [Gemma 3 model card](https://ai.google.dev/gemma/docs/core/model_card_3).
165
+
166
+ ## Evaluation
167
+
168
+ ### Benchmark Results
169
+
170
+ The model was evaluated against a large collection of different datasets and metrics to cover different aspects of text understanding.
171
+
172
+ #### Full Precision Checkpoint
173
+
174
+ <table>
175
+ <thead>
176
+ <tr>
177
+ <th colspan="3"><strong>MTEB (Multilingual, v2)</strong></th>
178
+ </tr>
179
+ </thead>
180
+ <tbody>
181
+ <tr>
182
+ <td><strong>Dimensionality</strong></td>
183
+ <td><strong>Mean (Task)</strong></td>
184
+ <td><strong>Mean (TaskType)</strong></td>
185
+ </tr>
186
+ <tr>
187
+ <td>768d</td>
188
+ <td>61.15</td>
189
+ <td>54.31</td>
190
+ </tr>
191
+ <tr>
192
+ <td>512d</td>
193
+ <td>60.71</td>
194
+ <td>53.89</td>
195
+ </tr>
196
+ <tr>
197
+ <td>256d</td>
198
+ <td>59.68</td>
199
+ <td>53.01</td>
200
+ </tr>
201
+ <tr>
202
+ <td>128d</td>
203
+ <td>58.23</td>
204
+ <td>51.77</td>
205
+ </tr>
206
+ </tbody>
207
+ </table>
208
+
209
+ <table>
210
+ <thead>
211
+ <tr>
212
+ <th colspan="3"><strong>MTEB (English, v2)</strong></th>
213
+ </tr>
214
+ </thead>
215
+ <tbody>
216
+ <tr>
217
+ <td><strong>Dimensionality</strong></td>
218
+ <td><strong>Mean (Task)</strong></td>
219
+ <td><strong>Mean (TaskType)</strong></td>
220
+ </tr>
221
+ <tr>
222
+ <td>768d</td>
223
+ <td>68.36</td>
224
+ <td>64.15</td>
225
+ </tr>
226
+ <tr>
227
+ <td>512d</td>
228
+ <td>67.80</td>
229
+ <td>63.59</td>
230
+ </tr>
231
+ <tr>
232
+ <td>256d</td>
233
+ <td>66.89</td>
234
+ <td>62.94</td>
235
+ </tr>
236
+ <tr>
237
+ <td>128d</td>
238
+ <td>65.09</td>
239
+ <td>61.56</td>
240
+ </tr>
241
+ </tbody>
242
+ </table>
243
+
244
+ <table>
245
+ <thead>
246
+ <tr>
247
+ <th colspan="3"><strong>MTEB (Code, v1)</strong></th>
248
+ </tr>
249
+ </thead>
250
+ <tbody>
251
+ <tr>
252
+ <td><strong>Dimensionality</strong></td>
253
+ <td><strong>Mean (Task)</strong></td>
254
+ <td><strong>Mean (TaskType)</strong></td>
255
+ </tr>
256
+ <tr>
257
+ <td>768d</td>
258
+ <td>68.76</td>
259
+ <td>68.76</td>
260
+ </tr>
261
+ <tr>
262
+ <td>512d</td>
263
+ <td>68.48</td>
264
+ <td>68.48</td>
265
+ </tr>
266
+ <tr>
267
+ <td>256d</td>
268
+ <td>66.74</td>
269
+ <td>66.74</td>
270
+ </tr>
271
+ <tr>
272
+ <td>128d</td>
273
+ <td>62.96</td>
274
+ <td>62.96</td>
275
+ </tr>
276
+ </tbody>
277
+ </table>
278
+
279
+ #### QAT Checkpoints
280
+
281
+ <table>
282
+ <thead>
283
+ <tr>
284
+ <th colspan="3"><strong>MTEB (Multilingual, v2)</strong></th>
285
+ </tr>
286
+ </thead>
287
+ <tbody>
288
+ <tr>
289
+ <td><strong>Quant config (dimensionality)</strong></td>
290
+ <td><strong>Mean (Task)</strong></td>
291
+ <td><strong>Mean (TaskType)</strong></td>
292
+ </tr>
293
+ <tr>
294
+ <td>Q4_0 (768d)</td>
295
+ <td>60.62</td>
296
+ <td>53.61</td>
297
+ </tr>
298
+ <tr>
299
+ <td>Q8_0 (768d)</td>
300
+ <td>60.93</td>
301
+ <td>53.95</td>
302
+ </tr>
303
+ <tr>
304
+ <td>Mixed Precision* (768d)</td>
305
+ <td>60.69</td>
306
+ <td>53.82</td>
307
+ </tr>
308
+ </tbody>
309
+ </table>
310
+
311
+ <table>
312
+ <thead>
313
+ <tr>
314
+ <th colspan="3"><strong>MTEB (English, v2)</strong></th>
315
+ </tr>
316
+ </thead>
317
+ <tbody>
318
+ <tr>
319
+ <td><strong>Quant config (dimensionality)</strong></td>
320
+ <td><strong>Mean (Task)</strong></td>
321
+ <td><strong>Mean (TaskType)</strong></td>
322
+ </tr>
323
+ <tr>
324
+ <td>Q4_0 (768d)</td>
325
+ <td>67.91</td>
326
+ <td>63.64</td>
327
+ </tr>
328
+ <tr>
329
+ <td>Q8_0 (768d)</td>
330
+ <td>68.13</td>
331
+ <td>63.85</td>
332
+ </tr>
333
+ <tr>
334
+ <td>Mixed Precision* (768d)</td>
335
+ <td>67.95</td>
336
+ <td>63.83</td>
337
+ </tr>
338
+ </tbody>
339
+ </table>
340
+
341
+ <table>
342
+ <thead>
343
+ <tr>
344
+ <th colspan="3"><strong>MTEB (Code, v1)</strong></th>
345
+ </tr>
346
+ </thead>
347
+ <tbody>
348
+ <tr>
349
+ <td><strong>Quant config (dimensionality)</strong></td>
350
+ <td><strong>Mean (Task)</strong></td>
351
+ <td><strong>Mean (TaskType)</strong></td>
352
+ </tr>
353
+ <tr>
354
+ <td>Q4_0 (768d)</td>
355
+ <td>67.99</td>
356
+ <td>67.99</td>
357
+ </tr>
358
+ <tr>
359
+ <td>Q8_0 (768d)</td>
360
+ <td>68.70</td>
361
+ <td>68.70</td>
362
+ </tr>
363
+ <tr>
364
+ <td>Mixed Precision* (768d)</td>
365
+ <td>68.03</td>
366
+ <td>68.03</td>
367
+ </tr>
368
+ </tbody>
369
+ </table>
370
+
371
+ Note: QAT models are evaluated after quantization
372
+
373
+ \* Mixed Precision refers to per-channel quantization with int4 for embeddings, feedforward, and projection layers, and int8 for attention (e4_a8_f4_p4).
374
+
375
+ ### Prompt Instructions
376
+
377
+ EmbeddingGemma can generate optimized embeddings for various use cases—such as document retrieval, question answering, and fact verification—or for specific input types—either a query or a document—using prompts that are prepended to the input strings.
378
+ Query prompts follow the form `task: {task description} | query: ` where the task description varies by the use case, with the default task description being `search result`. Document-style prompts follow the form `title: {title | "none"} | text: ` where the title is either `none` (the default) or the actual title of the document. Note that providing a title, if available, will improve model performance for document prompts but may require manual formatting.
379
+
380
+ Use the following prompts based on your use case and input data type. These may already be available in the EmbeddingGemma configuration in your modeling framework of choice.
381
+
382
+ <table>
383
+ <thead>
384
+ <tr>
385
+ <th><br>
386
+ <strong>Use Case (task type enum)</strong></th>
387
+ <th><br>
388
+ <strong>Descriptions</strong></th>
389
+ <th><br>
390
+ <strong>Recommended Prompt</strong></th>
391
+ </tr>
392
+ </thead>
393
+ <tbody>
394
+ <tr>
395
+ <td><br>
396
+ Retrieval (Query)</td>
397
+ <td rowspan="4"><br>
398
+ Used to generate embeddings that are optimized for document search or information retrieval</td>
399
+ <td><br>
400
+ task: search result | query: {content}</td>
401
+ </tr>
402
+ <tr>
403
+ <td><br>
404
+ Retrieval (Document)</td>
405
+ <td><br>
406
+ title: {title | "none"} | text: {content}</td>
407
+ </tr>
408
+ <tr>
409
+ <td><br>
410
+ Question Answering</td>
411
+ <td><br>
412
+ task: question answering | query: {content}</td>
413
+ </tr>
414
+ <tr>
415
+ <td><br>
416
+ Fact Verification</td>
417
+ <td><br>
418
+ task: fact checking | query: {content}</td>
419
+ </tr>
420
+ <tr>
421
+ <td><br>
422
+ Classification</td>
423
+ <td><br>
424
+ Used to generate embeddings that are optimized to classify texts according to preset labels</td>
425
+ <td><br>
426
+ task: classification | query: {content}</td>
427
+ </tr>
428
+ <tr>
429
+ <td><br>
430
+ Clustering</td>
431
+ <td><br>
432
+ Used to generate embeddings that are optimized to cluster texts based on their similarities</td>
433
+ <td><br>
434
+ task: clustering | query: {content}</td>
435
+ </tr>
436
+ <tr>
437
+ <td><br>
438
+ Semantic Similarity</td>
439
+ <td><br>
440
+ Used to generate embeddings that are optimized to assess text similarity. This is not intended for retrieval use cases.</td>
441
+ <td><br>
442
+ task: sentence similarity | query: {content}</td>
443
+ </tr>
444
+ <tr>
445
+ <td><br>
446
+ Code Retrieval</td>
447
+ <td><br>
448
+ Used to retrieve a code block based on a natural language query, such as <em>sort an array</em> or <em>reverse a linked list</em>. Embeddings of the code blocks are computed using retrieval_document.</td>
449
+ <td><br>
450
+ task: code retrieval | query: {content}</td>
451
+ </tr>
452
+ </tbody>
453
+ </table>
454
+
455
+ ## Usage and Limitations
456
+
457
+ These models have certain limitations that users should be aware of.
458
+
459
+ ### Intended Usage
460
+
461
+ Open embedding models have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development.
462
+
463
+ - **Semantic Similarity**: Embeddings optimized to assess text similarity, such as recommendation systems and duplicate detection
464
+ - **Classification**: Embeddings optimized to classify texts according to preset labels, such as sentiment analysis and spam detection
465
+ - **Clustering**: Embeddings optimized to cluster texts based on their similarities, such as document organization, market research, and anomaly detection
466
+ - **Retrieval**
467
+ - **Document**: Embeddings optimized for document search, such as indexing articles, books, or web pages for search
468
+ - **Query**: Embeddings optimized for general search queries, such as custom search
469
+ - **Code Query**: Embeddings optimized for retrieval of code blocks based on natural language queries, such as code suggestions and search
470
+
471
+ - **Question Answering**: Embeddings for questions in a question-answering system, optimized for finding documents that answer the question, such as chatbox.
472
+ - **Fact Verification**: Embeddings for statements that need to be verified, optimized for retrieving documents that contain evidence supporting or refuting the statement, such as automated fact-checking systems.
473
+
474
+ ### Limitations
475
+
476
+ - Training Data
477
+ - The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses.
478
+ - The scope of the training dataset determines the subject areas the model can handle effectively.
479
+
480
+ - Language Ambiguity and Nuance
481
+ - Natural language is inherently complex. Models might struggle to grasp subtle nuances, sarcasm, or figurative language.
482
+
483
+ ### Ethical Considerations and Risks
484
+
485
+ Risks identified and mitigations:
486
+
487
+ - **Perpetuation of biases**: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases.
488
+ - **Misuse for malicious purposes**: Technical limitations and developer and end-user education can help mitigate against malicious applications of embeddings. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy).
489
+ - **Privacy violations**: Models were trained on data filtered for removal of certain personal information and other sensitive data. Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques.
490
+
491
+ ### Benefits
492
+
493
+ At the time of release, this family of models provides high-performance open embedding model implementations designed from the ground up for responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown superior performance to other, comparably-sized open model alternatives.
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
config.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_sliding_window_pattern": 6,
3
+ "architectures": [
4
+ "Gemma3TextModel"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "attn_logit_softcapping": null,
9
+ "bos_token_id": 2,
10
+ "dtype": "float32",
11
+ "eos_token_id": 1,
12
+ "final_logit_softcapping": null,
13
+ "head_dim": 256,
14
+ "hidden_activation": "gelu_pytorch_tanh",
15
+ "hidden_size": 768,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 1152,
18
+ "layer_types": [
19
+ "sliding_attention",
20
+ "sliding_attention",
21
+ "sliding_attention",
22
+ "sliding_attention",
23
+ "sliding_attention",
24
+ "full_attention",
25
+ "sliding_attention",
26
+ "sliding_attention",
27
+ "sliding_attention",
28
+ "sliding_attention",
29
+ "sliding_attention",
30
+ "full_attention",
31
+ "sliding_attention",
32
+ "sliding_attention",
33
+ "sliding_attention",
34
+ "sliding_attention",
35
+ "sliding_attention",
36
+ "full_attention",
37
+ "sliding_attention",
38
+ "sliding_attention",
39
+ "sliding_attention",
40
+ "sliding_attention",
41
+ "sliding_attention",
42
+ "full_attention"
43
+ ],
44
+ "max_position_embeddings": 2048,
45
+ "model_type": "gemma3_text",
46
+ "num_attention_heads": 3,
47
+ "num_hidden_layers": 24,
48
+ "num_key_value_heads": 1,
49
+ "pad_token_id": 0,
50
+ "query_pre_attn_scalar": 256,
51
+ "rms_norm_eps": 1e-06,
52
+ "rope_local_base_freq": 10000.0,
53
+ "rope_scaling": null,
54
+ "rope_theta": 1000000.0,
55
+ "sliding_window": 512,
56
+ "transformers_version": "4.57.0.dev0",
57
+ "use_bidirectional_attention": true,
58
+ "use_cache": true,
59
+ "vocab_size": 262144,
60
+ "transformers.js_config": {
61
+ "use_external_data_format": {
62
+ "model.onnx": 1,
63
+ "model_fp16.onnx": 1,
64
+ "model_quantized.onnx": 1,
65
+ "model_q4.onnx": 1,
66
+ "model_q4f16.onnx": 1,
67
+ "model_no_gather_q4.onnx": 1
68
+ },
69
+ "kv_cache_dtype": false
70
+ }
71
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cache_implementation": "hybrid",
3
+ "do_sample": true,
4
+ "top_k": 64,
5
+ "top_p": 0.95,
6
+ "transformers_version": "4.57.0.dev0"
7
+ }
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea91fd315a7c152d427d231746f0f811a1ac93beaba656abfdf2b24e091265e4
3
+ size 479932
onnx/model.onnx_data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef835ae565d8695236652475903078e8ed794c7c35faf1164d78ec3238e8a88d
3
+ size 1234521088
onnx/model_fp16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcfaf21ff7cae91af9295366ac0d7352efcadeaf7deefb98f82d5056502d0bf2
3
+ size 655263
onnx/model_fp16.onnx_data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cd839755aa8e24d5af7f16ef275b12d717a4401bb009099b8c17e4156d3d5d5
3
+ size 617434112
onnx/model_no_gather_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2bae6947463c5eec82bd8e9a66483b40cef40fdf2b874f3e180f3ea88be34f0
3
+ size 529476
onnx/model_no_gather_q4.onnx_data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c315bb5ff8170ff0a0d6878d4bf852c0f14534ac80bb7f42645bafdcb4ce230
3
+ size 194628608
onnx/model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad1dfee81a70f7944b9b9d1cc6e48075b832881cf33fab2f2b248be78f3f0043
3
+ size 519322
onnx/model_q4.onnx_data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:599962c3143b040de2dd05e5975be3e9091dd067cacc6a8f7186e3203bab9e02
3
+ size 196725760
onnx/model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4df4a2a44253865800b8882a497badf67c2707a487267460813f78da339c753f
3
+ size 705221
onnx/model_q4f16.onnx_data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9cc456a345e6aa9bc5fb75b54c10b3e0edbb4f80708f749dc4c45dbed5b6edf
3
+ size 175410176
onnx/model_quantized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:172efde319fe1542dc41f31be6154910b05b78f7a861c265c4600eec906bd6d8
3
+ size 567874
onnx/model_quantized.onnx_data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:705626e28e4c23c82ade34566b4197d97f534c12275fa406dfb71e9937d388c0
3
+ size 308890624
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dda02faaf32bc91031dc8c88457ac272b00c1016cc679757d1c441b248b9c47
3
+ size 20323312
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff