Xenova HF Staff commited on
Commit
5477803
·
verified ·
1 Parent(s): 66db238

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +149 -0
README.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ ---
4
+
5
+ ## Usage
6
+
7
+ ### ONNXRuntime
8
+
9
+ ```py
10
+ from transformers import AutoConfig, AutoTokenizer
11
+ import onnxruntime
12
+ import numpy as np
13
+
14
+ # 1. Load config, processor, and model
15
+ path_to_model = "./gemma-3-1b-it-ONNX"
16
+ config = AutoConfig.from_pretrained(path_to_model)
17
+ tokenizer = AutoTokenizer.from_pretrained(path_to_model)
18
+ decoder_session = onnxruntime.InferenceSession(f"{path_to_model}/onnx/model.onnx")
19
+
20
+ ## Set config values
21
+ num_key_value_heads = config.num_key_value_heads
22
+ head_dim = config.head_dim
23
+ num_hidden_layers = config.num_hidden_layers
24
+ eos_token_id = 106 # 106 is for <end_of_turn>
25
+
26
+ # 2. Prepare inputs
27
+ ## Create input messages
28
+ messages = [
29
+ { "role": "system", "content": "You are a helpful assistant." },
30
+ { "role": "user", "content": "Write me a poem about Machine Learning." },
31
+ ]
32
+
33
+ ## Apply tokenizer
34
+ inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="np")
35
+
36
+ ## Prepare decoder inputs
37
+ batch_size = inputs['input_ids'].shape[0]
38
+ past_key_values = {
39
+ f'past_key_values.{layer}.{kv}': np.zeros([batch_size, num_key_value_heads, 0, head_dim], dtype=np.float32)
40
+ for layer in range(num_hidden_layers)
41
+ for kv in ('key', 'value')
42
+ }
43
+ input_ids = inputs['input_ids']
44
+ attention_mask = inputs['attention_mask']
45
+ position_ids = np.cumsum(inputs['attention_mask'], axis=-1) + 1
46
+
47
+ # 3. Generation loop
48
+ max_new_tokens = 1024
49
+ generated_tokens = np.array([[]], dtype=np.int64)
50
+ for i in range(max_new_tokens):
51
+ logits, *present_key_values = decoder_session.run(None, dict(
52
+ input_ids=input_ids,
53
+ attention_mask=attention_mask,
54
+ position_ids=position_ids,
55
+ **past_key_values,
56
+ ))
57
+
58
+ ## Update values for next generation loop
59
+ input_ids = logits[:, -1].argmax(-1, keepdims=True)
60
+ attention_mask = np.ones_like(input_ids)
61
+ position_ids = position_ids[:, -1:] + 1
62
+ for j, key in enumerate(past_key_values):
63
+ past_key_values[key] = present_key_values[j]
64
+
65
+ generated_tokens = np.concatenate([generated_tokens, input_ids], axis=-1)
66
+ if (input_ids == eos_token_id).all():
67
+ break
68
+
69
+ ## (Optional) Streaming
70
+ print(tokenizer.decode(input_ids[0]), end='', flush=True)
71
+ print()
72
+
73
+ # 4. Output result
74
+ print(tokenizer.batch_decode(generated_tokens))
75
+ ```
76
+
77
+ <details>
78
+ <summary>See example output</summary>
79
+
80
+ ```
81
+ Okay, here’s a poem about Machine Learning, aiming for a balance of technical and evocative language:
82
+
83
+ **The Silent Learner**
84
+
85
+ The data streams, a boundless flow,
86
+ A river vast, where patterns grow.
87
+ No human hand to guide the way,
88
+ Just algorithms, come what may.
89
+
90
+ Machine Learning, a subtle art,
91
+ To teach a system, a brand new start.
92
+ With weights and biases, finely tuned,
93
+ It seeks the truth, beneath the moon.
94
+
95
+ It learns from errors, big and small,
96
+ Adjusting swiftly, standing tall.
97
+ From pixels bright to voices clear,
98
+ It builds a model, banishing fear.
99
+
100
+ Of blind prediction, cold and stark,
101
+ It finds the meaning, leaves its mark.
102
+ A network deep, a complex grace,
103
+ Discovering insights, time and space.
104
+
105
+ It sees the trends, the subtle hue,
106
+ Predicting futures, fresh and new.
107
+ A silent learner, ever keen,
108
+ A digital mind, unseen, serene.
109
+
110
+ So let the code begin to gleam,
111
+ A blossoming of a learning dream.
112
+ Machine Learning, a wondrous sight,
113
+ Shaping the future, shining bright.
114
+
115
+ ---
116
+
117
+ Would you like me to:
118
+
119
+ * Adjust the tone or style? (e.g., more technical, more metaphorical)
120
+ * Focus on a specific aspect of ML (e.g., neural networks, data analysis)?
121
+ * Create a different length or format?
122
+ ```
123
+
124
+ </details>
125
+
126
+
127
+
128
+ ### Transformers.js
129
+ ```js
130
+ import { pipeline } from "@huggingface/transformers";
131
+
132
+ // Create a text generation pipeline
133
+ const generator = await pipeline(
134
+ "text-generation",
135
+ "onnx-community/gemma-3-1b-it-ONNX",
136
+ { dtype: "q4" },
137
+ );
138
+
139
+ // Define the list of messages
140
+ const messages = [
141
+ { role: "system", content: "You are a helpful assistant." },
142
+ { role: "user", content: "Write me a poem about Machine Learning." },
143
+ ];
144
+
145
+ // Generate a response
146
+ const output = await generator(messages, { max_new_tokens: 512, do_sample: false });
147
+ console.log(output[0].generated_text.at(-1).content);
148
+ ```
149
+