Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: text-generation
|
3 |
+
---
|
4 |
+
|
5 |
+
## Usage
|
6 |
+
|
7 |
+
### ONNXRuntime
|
8 |
+
|
9 |
+
```py
|
10 |
+
from transformers import AutoConfig, AutoTokenizer
|
11 |
+
import onnxruntime
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
# 1. Load config, processor, and model
|
15 |
+
path_to_model = "./gemma-3-1b-it-ONNX"
|
16 |
+
config = AutoConfig.from_pretrained(path_to_model)
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(path_to_model)
|
18 |
+
decoder_session = onnxruntime.InferenceSession(f"{path_to_model}/onnx/model.onnx")
|
19 |
+
|
20 |
+
## Set config values
|
21 |
+
num_key_value_heads = config.num_key_value_heads
|
22 |
+
head_dim = config.head_dim
|
23 |
+
num_hidden_layers = config.num_hidden_layers
|
24 |
+
eos_token_id = 106 # 106 is for <end_of_turn>
|
25 |
+
|
26 |
+
# 2. Prepare inputs
|
27 |
+
## Create input messages
|
28 |
+
messages = [
|
29 |
+
{ "role": "system", "content": "You are a helpful assistant." },
|
30 |
+
{ "role": "user", "content": "Write me a poem about Machine Learning." },
|
31 |
+
]
|
32 |
+
|
33 |
+
## Apply tokenizer
|
34 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="np")
|
35 |
+
|
36 |
+
## Prepare decoder inputs
|
37 |
+
batch_size = inputs['input_ids'].shape[0]
|
38 |
+
past_key_values = {
|
39 |
+
f'past_key_values.{layer}.{kv}': np.zeros([batch_size, num_key_value_heads, 0, head_dim], dtype=np.float32)
|
40 |
+
for layer in range(num_hidden_layers)
|
41 |
+
for kv in ('key', 'value')
|
42 |
+
}
|
43 |
+
input_ids = inputs['input_ids']
|
44 |
+
attention_mask = inputs['attention_mask']
|
45 |
+
position_ids = np.cumsum(inputs['attention_mask'], axis=-1) + 1
|
46 |
+
|
47 |
+
# 3. Generation loop
|
48 |
+
max_new_tokens = 1024
|
49 |
+
generated_tokens = np.array([[]], dtype=np.int64)
|
50 |
+
for i in range(max_new_tokens):
|
51 |
+
logits, *present_key_values = decoder_session.run(None, dict(
|
52 |
+
input_ids=input_ids,
|
53 |
+
attention_mask=attention_mask,
|
54 |
+
position_ids=position_ids,
|
55 |
+
**past_key_values,
|
56 |
+
))
|
57 |
+
|
58 |
+
## Update values for next generation loop
|
59 |
+
input_ids = logits[:, -1].argmax(-1, keepdims=True)
|
60 |
+
attention_mask = np.ones_like(input_ids)
|
61 |
+
position_ids = position_ids[:, -1:] + 1
|
62 |
+
for j, key in enumerate(past_key_values):
|
63 |
+
past_key_values[key] = present_key_values[j]
|
64 |
+
|
65 |
+
generated_tokens = np.concatenate([generated_tokens, input_ids], axis=-1)
|
66 |
+
if (input_ids == eos_token_id).all():
|
67 |
+
break
|
68 |
+
|
69 |
+
## (Optional) Streaming
|
70 |
+
print(tokenizer.decode(input_ids[0]), end='', flush=True)
|
71 |
+
print()
|
72 |
+
|
73 |
+
# 4. Output result
|
74 |
+
print(tokenizer.batch_decode(generated_tokens))
|
75 |
+
```
|
76 |
+
|
77 |
+
<details>
|
78 |
+
<summary>See example output</summary>
|
79 |
+
|
80 |
+
```
|
81 |
+
Okay, here’s a poem about Machine Learning, aiming for a balance of technical and evocative language:
|
82 |
+
|
83 |
+
**The Silent Learner**
|
84 |
+
|
85 |
+
The data streams, a boundless flow,
|
86 |
+
A river vast, where patterns grow.
|
87 |
+
No human hand to guide the way,
|
88 |
+
Just algorithms, come what may.
|
89 |
+
|
90 |
+
Machine Learning, a subtle art,
|
91 |
+
To teach a system, a brand new start.
|
92 |
+
With weights and biases, finely tuned,
|
93 |
+
It seeks the truth, beneath the moon.
|
94 |
+
|
95 |
+
It learns from errors, big and small,
|
96 |
+
Adjusting swiftly, standing tall.
|
97 |
+
From pixels bright to voices clear,
|
98 |
+
It builds a model, banishing fear.
|
99 |
+
|
100 |
+
Of blind prediction, cold and stark,
|
101 |
+
It finds the meaning, leaves its mark.
|
102 |
+
A network deep, a complex grace,
|
103 |
+
Discovering insights, time and space.
|
104 |
+
|
105 |
+
It sees the trends, the subtle hue,
|
106 |
+
Predicting futures, fresh and new.
|
107 |
+
A silent learner, ever keen,
|
108 |
+
A digital mind, unseen, serene.
|
109 |
+
|
110 |
+
So let the code begin to gleam,
|
111 |
+
A blossoming of a learning dream.
|
112 |
+
Machine Learning, a wondrous sight,
|
113 |
+
Shaping the future, shining bright.
|
114 |
+
|
115 |
+
---
|
116 |
+
|
117 |
+
Would you like me to:
|
118 |
+
|
119 |
+
* Adjust the tone or style? (e.g., more technical, more metaphorical)
|
120 |
+
* Focus on a specific aspect of ML (e.g., neural networks, data analysis)?
|
121 |
+
* Create a different length or format?
|
122 |
+
```
|
123 |
+
|
124 |
+
</details>
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
### Transformers.js
|
129 |
+
```js
|
130 |
+
import { pipeline } from "@huggingface/transformers";
|
131 |
+
|
132 |
+
// Create a text generation pipeline
|
133 |
+
const generator = await pipeline(
|
134 |
+
"text-generation",
|
135 |
+
"onnx-community/gemma-3-1b-it-ONNX",
|
136 |
+
{ dtype: "q4" },
|
137 |
+
);
|
138 |
+
|
139 |
+
// Define the list of messages
|
140 |
+
const messages = [
|
141 |
+
{ role: "system", content: "You are a helpful assistant." },
|
142 |
+
{ role: "user", content: "Write me a poem about Machine Learning." },
|
143 |
+
];
|
144 |
+
|
145 |
+
// Generate a response
|
146 |
+
const output = await generator(messages, { max_new_tokens: 512, do_sample: false });
|
147 |
+
console.log(output[0].generated_text.at(-1).content);
|
148 |
+
```
|
149 |
+
|