Upload 5 files
Browse files- config.json +194 -0
- configuration_minicpm.py +206 -0
- modeling_minicpm.py +0 -0
- pytorch_model.bin +3 -0
- quantize_config.json +14 -0
config.json
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/DATA/disk1/guanwenyu/models/minicpm4/0527-sft-8000/",
|
3 |
+
"architectures": [
|
4 |
+
"MiniCPMForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_minicpm.MiniCPMConfig",
|
10 |
+
"AutoModel": "modeling_minicpm.MiniCPMModel",
|
11 |
+
"AutoModelForCausalLM": "modeling_minicpm.MiniCPMLongRopeForCausalLM",
|
12 |
+
"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMLongRopeForCausalLM",
|
13 |
+
"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
|
14 |
+
},
|
15 |
+
"bias": false,
|
16 |
+
"bos_token_id": 1,
|
17 |
+
"dim_model_base": 256,
|
18 |
+
"eos_token_id": [
|
19 |
+
2,
|
20 |
+
73440
|
21 |
+
],
|
22 |
+
"head_dim": 128,
|
23 |
+
"hidden_act": "silu",
|
24 |
+
"hidden_size": 4096,
|
25 |
+
"initializer_range": 0.1,
|
26 |
+
"intermediate_size": 16384,
|
27 |
+
"max_position_embeddings": 32768,
|
28 |
+
"model_type": "minicpm",
|
29 |
+
"num_attention_heads": 32,
|
30 |
+
"num_hidden_layers": 1,
|
31 |
+
"num_key_value_heads": 2,
|
32 |
+
"pad_token_id": 2,
|
33 |
+
"pretraining_tp": 1,
|
34 |
+
"quantization_config": {
|
35 |
+
"bits": 4,
|
36 |
+
"checkpoint_format": "gptq",
|
37 |
+
"damp_percent": 0.01,
|
38 |
+
"desc_act": false,
|
39 |
+
"group_size": 128,
|
40 |
+
"lm_head": false,
|
41 |
+
"model_file_base_name": null,
|
42 |
+
"model_name_or_path": null,
|
43 |
+
"quant_method": "gptq",
|
44 |
+
"static_groups": false,
|
45 |
+
"sym": true,
|
46 |
+
"true_sequential": true
|
47 |
+
},
|
48 |
+
"rms_norm_eps": 1e-06,
|
49 |
+
"rope_scaling": {
|
50 |
+
"long_factor": [
|
51 |
+
0.9977997200264581,
|
52 |
+
1.014658295992452,
|
53 |
+
1.0349680404997148,
|
54 |
+
1.059429246056193,
|
55 |
+
1.0888815016813513,
|
56 |
+
1.1243301355211495,
|
57 |
+
1.166977103606075,
|
58 |
+
1.2182568066927284,
|
59 |
+
1.2798772354275727,
|
60 |
+
1.3538666751582975,
|
61 |
+
1.4426259039919596,
|
62 |
+
1.5489853358570191,
|
63 |
+
1.6762658237220625,
|
64 |
+
1.8283407612492941,
|
65 |
+
2.0096956085876183,
|
66 |
+
2.225478927469756,
|
67 |
+
2.481536379650452,
|
68 |
+
2.784415934557119,
|
69 |
+
3.1413289096347365,
|
70 |
+
3.560047844772632,
|
71 |
+
4.048719380066383,
|
72 |
+
4.615569542115128,
|
73 |
+
5.2684819496549835,
|
74 |
+
6.014438591970396,
|
75 |
+
6.858830049237097,
|
76 |
+
7.804668263503327,
|
77 |
+
8.851768731513417,
|
78 |
+
9.99600492938444,
|
79 |
+
11.228766118181639,
|
80 |
+
12.536757560834843,
|
81 |
+
13.902257701387796,
|
82 |
+
15.303885189125953,
|
83 |
+
16.717837610115794,
|
84 |
+
18.119465097853947,
|
85 |
+
19.484965238406907,
|
86 |
+
20.792956681060105,
|
87 |
+
22.02571786985731,
|
88 |
+
23.16995406772833,
|
89 |
+
24.217054535738416,
|
90 |
+
25.16289275000465,
|
91 |
+
26.007284207271347,
|
92 |
+
26.753240849586767,
|
93 |
+
27.40615325712662,
|
94 |
+
27.973003419175363,
|
95 |
+
28.461674954469114,
|
96 |
+
28.880393889607006,
|
97 |
+
29.237306864684626,
|
98 |
+
29.540186419591297,
|
99 |
+
29.79624387177199,
|
100 |
+
30.01202719065413,
|
101 |
+
30.193382037992453,
|
102 |
+
30.34545697551969,
|
103 |
+
30.47273746338473,
|
104 |
+
30.579096895249787,
|
105 |
+
30.66785612408345,
|
106 |
+
30.741845563814174,
|
107 |
+
30.80346599254902,
|
108 |
+
30.85474569563567,
|
109 |
+
30.897392663720595,
|
110 |
+
30.932841297560394,
|
111 |
+
30.962293553185553,
|
112 |
+
30.986754758742034,
|
113 |
+
31.007064503249293,
|
114 |
+
31.02392307921529
|
115 |
+
],
|
116 |
+
"original_max_position_embeddings": 32768,
|
117 |
+
"short_factor": [
|
118 |
+
0.9977997200264581,
|
119 |
+
1.014658295992452,
|
120 |
+
1.0349680404997148,
|
121 |
+
1.059429246056193,
|
122 |
+
1.0888815016813513,
|
123 |
+
1.1243301355211495,
|
124 |
+
1.166977103606075,
|
125 |
+
1.2182568066927284,
|
126 |
+
1.2798772354275727,
|
127 |
+
1.3538666751582975,
|
128 |
+
1.4426259039919596,
|
129 |
+
1.5489853358570191,
|
130 |
+
1.6762658237220625,
|
131 |
+
1.8283407612492941,
|
132 |
+
2.0096956085876183,
|
133 |
+
2.225478927469756,
|
134 |
+
2.481536379650452,
|
135 |
+
2.784415934557119,
|
136 |
+
3.1413289096347365,
|
137 |
+
3.560047844772632,
|
138 |
+
4.048719380066383,
|
139 |
+
4.615569542115128,
|
140 |
+
5.2684819496549835,
|
141 |
+
6.014438591970396,
|
142 |
+
6.858830049237097,
|
143 |
+
7.804668263503327,
|
144 |
+
8.851768731513417,
|
145 |
+
9.99600492938444,
|
146 |
+
11.228766118181639,
|
147 |
+
12.536757560834843,
|
148 |
+
13.902257701387796,
|
149 |
+
15.303885189125953,
|
150 |
+
16.717837610115794,
|
151 |
+
18.119465097853947,
|
152 |
+
19.484965238406907,
|
153 |
+
20.792956681060105,
|
154 |
+
22.02571786985731,
|
155 |
+
23.16995406772833,
|
156 |
+
24.217054535738416,
|
157 |
+
25.16289275000465,
|
158 |
+
26.007284207271347,
|
159 |
+
26.753240849586767,
|
160 |
+
27.40615325712662,
|
161 |
+
27.973003419175363,
|
162 |
+
28.461674954469114,
|
163 |
+
28.880393889607006,
|
164 |
+
29.237306864684626,
|
165 |
+
29.540186419591297,
|
166 |
+
29.79624387177199,
|
167 |
+
30.01202719065413,
|
168 |
+
30.193382037992453,
|
169 |
+
30.34545697551969,
|
170 |
+
30.47273746338473,
|
171 |
+
30.579096895249787,
|
172 |
+
30.66785612408345,
|
173 |
+
30.741845563814174,
|
174 |
+
30.80346599254902,
|
175 |
+
30.85474569563567,
|
176 |
+
30.897392663720595,
|
177 |
+
30.932841297560394,
|
178 |
+
30.962293553185553,
|
179 |
+
30.986754758742034,
|
180 |
+
31.007064503249293,
|
181 |
+
31.02392307921529
|
182 |
+
],
|
183 |
+
"type": "longrope"
|
184 |
+
},
|
185 |
+
"rope_theta": 10000.0,
|
186 |
+
"scale_depth": 1.4,
|
187 |
+
"mup_denominator": 32,
|
188 |
+
"scale_emb": 12,
|
189 |
+
"tie_word_embeddings": false,
|
190 |
+
"torch_dtype": "float16",
|
191 |
+
"transformers_version": "4.40.2",
|
192 |
+
"use_cache": true,
|
193 |
+
"vocab_size": 73448
|
194 |
+
}
|
configuration_minicpm.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
4 |
+
# and OPT implementations in this library. It has been modified from its
|
5 |
+
# original forms to accommodate minor architectural differences compared
|
6 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
7 |
+
#
|
8 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
+
# you may not use this file except in compliance with the License.
|
10 |
+
# You may obtain a copy of the License at
|
11 |
+
#
|
12 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
+
#
|
14 |
+
# Unless required by applicable law or agreed to in writing, software
|
15 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
+
# See the License for the specific language governing permissions and
|
18 |
+
# limitations under the License.
|
19 |
+
""" MiniCPM model configuration"""
|
20 |
+
|
21 |
+
from transformers.configuration_utils import PretrainedConfig
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
27 |
+
|
28 |
+
|
29 |
+
class MiniCPMConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
|
32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
33 |
+
defaults will yield a similar configuration to that of the MiniCPM-7B.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
41 |
+
Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`MiniCPMModel`]
|
43 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
48 |
+
Number of hidden layers in the Transformer decoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
50 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
51 |
+
num_key_value_heads (`int`, *optional*):
|
52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
58 |
+
`num_attention_heads`.
|
59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
60 |
+
The non-linear activation function (function or string) in the decoder.
|
61 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
62 |
+
The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
|
63 |
+
MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
67 |
+
The epsilon used by the rms normalization layers.
|
68 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
70 |
+
relevant if `config.is_decoder=True`.
|
71 |
+
pad_token_id (`int`, *optional*):
|
72 |
+
Padding token id.
|
73 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
74 |
+
Beginning of stream token id.
|
75 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
76 |
+
End of stream token id.
|
77 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
78 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
79 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
80 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
81 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
82 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
83 |
+
Whether to tie weight embeddings
|
84 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
85 |
+
The base period of the RoPE embeddings.
|
86 |
+
rope_scaling (`Dict`, *optional*):
|
87 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
88 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
89 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
90 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
91 |
+
these scaling strategies behave:
|
92 |
+
https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
93 |
+
experimental feature, subject to breaking API changes in future versions.
|
94 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
95 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
96 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
97 |
+
The dropout ratio for the attention probabilities.
|
98 |
+
|
99 |
+
```python
|
100 |
+
>>> from transformers import MiniCPMModel, MiniCPMConfig
|
101 |
+
|
102 |
+
>>> # Initializing a MiniCPM minicpm-7b style configuration
|
103 |
+
>>> configuration = MiniCPMConfig()
|
104 |
+
|
105 |
+
>>> # Initializing a model from the minicpm-7b style configuration
|
106 |
+
>>> model = MiniCPMModel(configuration)
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> configuration = model.config
|
110 |
+
```"""
|
111 |
+
|
112 |
+
model_type = 'minicpm'
|
113 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
vocab_size=32000,
|
118 |
+
hidden_size=4096,
|
119 |
+
intermediate_size=11008,
|
120 |
+
num_hidden_layers=32,
|
121 |
+
num_attention_heads=32,
|
122 |
+
num_key_value_heads=None,
|
123 |
+
hidden_act='silu',
|
124 |
+
max_position_embeddings=2048,
|
125 |
+
initializer_range=0.02,
|
126 |
+
rms_norm_eps=1e-6,
|
127 |
+
use_cache=True,
|
128 |
+
pad_token_id=None,
|
129 |
+
bos_token_id=1,
|
130 |
+
eos_token_id=2,
|
131 |
+
pretraining_tp=1,
|
132 |
+
tie_word_embeddings=True,
|
133 |
+
rope_theta=10000.0,
|
134 |
+
rope_scaling=None,
|
135 |
+
attention_bias=False,
|
136 |
+
attention_dropout=0.0,
|
137 |
+
scale_emb=1,
|
138 |
+
dim_model_base=1,
|
139 |
+
scale_depth=1,
|
140 |
+
mup_denominator=32,
|
141 |
+
sparse_config=None,
|
142 |
+
**kwargs):
|
143 |
+
|
144 |
+
self.vocab_size = vocab_size
|
145 |
+
self.max_position_embeddings = max_position_embeddings
|
146 |
+
self.hidden_size = hidden_size
|
147 |
+
self.intermediate_size = intermediate_size
|
148 |
+
self.num_hidden_layers = num_hidden_layers
|
149 |
+
self.num_attention_heads = num_attention_heads
|
150 |
+
|
151 |
+
# for backward compatibility
|
152 |
+
if num_key_value_heads is None:
|
153 |
+
num_key_value_heads = num_attention_heads
|
154 |
+
|
155 |
+
self.num_key_value_heads = num_key_value_heads
|
156 |
+
self.hidden_act = hidden_act
|
157 |
+
self.initializer_range = initializer_range
|
158 |
+
self.rms_norm_eps = rms_norm_eps
|
159 |
+
self.pretraining_tp = pretraining_tp
|
160 |
+
self.use_cache = use_cache
|
161 |
+
self.rope_theta = rope_theta
|
162 |
+
self.rope_scaling = rope_scaling
|
163 |
+
# self._rope_scaling_validation()
|
164 |
+
self.attention_bias = attention_bias
|
165 |
+
self.attention_dropout = attention_dropout
|
166 |
+
self.scale_emb = scale_emb
|
167 |
+
self.dim_model_base = dim_model_base
|
168 |
+
self.scale_depth = scale_depth
|
169 |
+
self.mup_denominator = mup_denominator
|
170 |
+
|
171 |
+
# sparse config
|
172 |
+
self.sparse_config = sparse_config
|
173 |
+
|
174 |
+
super().__init__(
|
175 |
+
pad_token_id=pad_token_id,
|
176 |
+
bos_token_id=bos_token_id,
|
177 |
+
eos_token_id=eos_token_id,
|
178 |
+
tie_word_embeddings=tie_word_embeddings,
|
179 |
+
**kwargs,
|
180 |
+
)
|
181 |
+
try:
|
182 |
+
import flash_attn
|
183 |
+
self._attn_implementation = 'flash_attention_2'
|
184 |
+
except:
|
185 |
+
pass
|
186 |
+
|
187 |
+
def _rope_scaling_validation(self):
|
188 |
+
"""
|
189 |
+
Validate the `rope_scaling` configuration.
|
190 |
+
"""
|
191 |
+
if self.rope_scaling is None:
|
192 |
+
return
|
193 |
+
|
194 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
195 |
+
raise ValueError(
|
196 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
197 |
+
f'got {self.rope_scaling}'
|
198 |
+
)
|
199 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
200 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
201 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
202 |
+
raise ValueError(
|
203 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
204 |
+
)
|
205 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
206 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
modeling_minicpm.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a029972ac8882aa8ccabadd718f647ae3da5dca8a0e48bc642f6cd15e7af4f4
|
3 |
+
size 1393815475
|
quantize_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bits": 4,
|
3 |
+
"group_size": 128,
|
4 |
+
"damp_percent": 0.01,
|
5 |
+
"desc_act": false,
|
6 |
+
"static_groups": false,
|
7 |
+
"sym": true,
|
8 |
+
"true_sequential": true,
|
9 |
+
"lm_head": false,
|
10 |
+
"model_name_or_path": null,
|
11 |
+
"model_file_base_name": null,
|
12 |
+
"quant_method": "gptq",
|
13 |
+
"checkpoint_format": "gptq"
|
14 |
+
}
|