Upload create-t5sdxl-v0.py with huggingface_hub
Browse files- create-t5sdxl-v0.py +62 -0
create-t5sdxl-v0.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# This code was used to create t5sdxl-v0-bf16
|
3 |
+
|
4 |
+
from diffusers import StableDiffusionXLPipeline
|
5 |
+
from transformers import T5Tokenizer, T5EncoderModel
|
6 |
+
from transformers import (
|
7 |
+
CLIPImageProcessor,
|
8 |
+
CLIPTextModel,
|
9 |
+
CLIPTextModelWithProjection,
|
10 |
+
CLIPTokenizer,
|
11 |
+
CLIPVisionModelWithProjection,
|
12 |
+
)
|
13 |
+
from typing import Optional
|
14 |
+
|
15 |
+
import torch.nn as nn, torch, types
|
16 |
+
|
17 |
+
T5_NAME = "mcmonkey/google_t5-v1_1-xxl_encoderonly"
|
18 |
+
SDXL_DIR = "stabilityai/stable-diffusion-xl-base-1.0"
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
class T5SDXLPipeline(StableDiffusionXLPipeline):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
vae,
|
26 |
+
text_encoder,
|
27 |
+
text_encoder_2,
|
28 |
+
tokenizer,
|
29 |
+
tokenizer_2,
|
30 |
+
unet,
|
31 |
+
scheduler,
|
32 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
33 |
+
feature_extractor: CLIPImageProcessor = None,
|
34 |
+
force_zeros_for_empty_prompt: bool = True,
|
35 |
+
add_watermarker: Optional[bool] = None,
|
36 |
+
):
|
37 |
+
super().__init__(
|
38 |
+
vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2,
|
39 |
+
unet, scheduler,
|
40 |
+
)
|
41 |
+
# ----- build T5 + projection -----
|
42 |
+
self.tokenizer = T5Tokenizer.from_pretrained(T5_NAME)
|
43 |
+
self.t5_encoder = T5EncoderModel.from_pretrained(T5_NAME,
|
44 |
+
torch_dtype=self.unet.dtype)
|
45 |
+
self.t5_projection = nn.Linear(4096, 2048) # trainable
|
46 |
+
|
47 |
+
# drop CLIP encoders to save VRAM
|
48 |
+
self.text_encoder = self.text_encoder_2 = None
|
49 |
+
self.tokenizer_2 = None
|
50 |
+
|
51 |
+
|
52 |
+
# --- usage ---
|
53 |
+
pipe = T5SDXLPipeline.from_pretrained(
|
54 |
+
SDXL_DIR,
|
55 |
+
torch_dtype=torch.bfloat16,
|
56 |
+
).to("cuda")
|
57 |
+
|
58 |
+
pipe.t5_encoder.to(pipe.device, dtype=pipe.unet.dtype)
|
59 |
+
pipe.t5_projection.to(pipe.device, dtype=pipe.unet.dtype)
|
60 |
+
print("Saving model")
|
61 |
+
pipe.save_pretrained("t5-sdxl-model")
|
62 |
+
|