osmedi commited on
Commit
1abd154
·
verified ·
1 Parent(s): e9d514c

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: "\n\nHuman: 2. Cook the mixture for 5-7 minutes or until the berries have\
9
+ \ softened and the sugar has dissolved, stirring occasionally.\n\nAssistant: \
10
+ \ <sep> Sure, here are the steps to follow:\n\n1. Place your mixture on the stove\
11
+ \ and turn the heat to medium.\n2. Start a timer for 5-7 minutes.\n3. As the mixture\
12
+ \ cooks, make sure to stir it occasionally. This will prevent it from sticking\
13
+ \ to the bottom of the pan and ensure that the heat is evenly distributed.\n4.\
14
+ \ Keep an eye on the berries in the mixture. You'll know they've softened when\
15
+ \ they can be easily squished with a spoon or spatula.\n5. Also, pay attention\
16
+ \ to the sugar in the mixture. It should dissolve completely, meaning you won't\
17
+ \ see any granules.\n6. Once the berries have softened and the sugar has dissolved,\
18
+ \ your mixture is ready. \n\nRemember to be careful when handling the hot mixture.\
19
+ \ Enjoy your cooking!"
20
+ - text: '
21
+
22
+
23
+ Human: 25 short, practical English phrases for tour operator drivers who pick
24
+ up clients at the airport. Each sentence should contain a maximum of five words.
25
+
26
+
27
+ Assistant: <sep> 1. "Welcome to our city!"
28
+
29
+ 2. "Need help with luggage?"
30
+
31
+ 3. "This way to the vehicle."
32
+
33
+ 4. "Please fasten your seatbelt."
34
+
35
+ 5. "We''re heading to your hotel."
36
+
37
+ 6. "Enjoy the complimentary water."
38
+
39
+ 7. "The ride will take 20 minutes."
40
+
41
+ 8. "Do you need a map?"
42
+
43
+ 9. "Restroom stop? Just let me know."
44
+
45
+ 10. "Here''s some local information."
46
+
47
+ 11. "Weather''s good for sightseeing."
48
+
49
+ 12. "Any dietary restrictions for meals?"
50
+
51
+ 13. "Tomorrow''s itinerary starts at 9."
52
+
53
+ 14. "Need recommendations for dinner?"
54
+
55
+ 15. "Hotel check-in is at 3."
56
+
57
+ 16. "Your tour guide is Jane."
58
+
59
+ 17. "Breakfast is served at 7."
60
+
61
+ 18. "Wifi password is ''welcome123''."
62
+
63
+ 19. "Any allergies I should know?"
64
+
65
+ 20. "Enjoy your stay here."
66
+
67
+ 21. "Your safety is our priority."
68
+
69
+ 22. "Excursion starts after breakfast."
70
+
71
+ 23. "Please keep your belongings safe."
72
+
73
+ 24. "Hope you had a good flight."
74
+
75
+ 25. "See you tomorrow morning."'
76
+ - text: '
77
+
78
+
79
+ Human: 252 can be expressed as a product of primes as :
80
+
81
+ Options:
82
+
83
+ (A) 2 x 2 x 3 x 3 x 7
84
+
85
+ (B) 2 x 2 x 2 x 3 x 7
86
+
87
+ (C) 3 x 3 x 3 x 3 x 7
88
+
89
+ (D) 2 x 3 x 3 x 3 x 7
90
+
91
+ (E) 2 x 3 x 7 x 3 x 2
92
+
93
+
94
+ 252 = 2 x 2 x 3 x 3 x 7. So the answer is: (A).
95
+
96
+
97
+ In a race with 30 runners where 5 trophies will be given to the top 7 runners
98
+ (the trophies are distinct: first place, second place, etc), how many ways can
99
+ this be done?
100
+
101
+ Options:
102
+
103
+ (A) 8^8 ways
104
+
105
+ (B) 8^9 ways
106
+
107
+ (C) 7^5 ways
108
+
109
+ (D) 8^7 ways
110
+
111
+ (E) 8^6 ways
112
+
113
+
114
+ 7 people can be prized with 5 distinct prizes in 7^5 ways So the answer is: (C).
115
+
116
+
117
+ The edge of a cube is 6a cm. Find its surface?
118
+
119
+ Options:
120
+
121
+ (A) 216a2
122
+
123
+ (B) 24a4
124
+
125
+ (C) 24a1
126
+
127
+ (D) 24a2
128
+
129
+ (E) 24a7
130
+
131
+
132
+ 6a2 = 6 * 6a * 6a = 216a2 So the answer is: (A).
133
+
134
+
135
+ In a school of 450 boys, 44% of Muslims, 28% Hindus, 10% Sikhs and the remaining
136
+ of other communities. How many belonged to the other communities?
137
+
138
+ Options:
139
+
140
+ (A) 72
141
+
142
+ (B) 75
143
+
144
+ (C) 80
145
+
146
+ (D) 81
147
+
148
+ (E) 90
149
+
150
+
151
+ Assistant: <sep> Question: In a school of 450 boys, 44% of Muslims, 28% Hindus,
152
+ 10% Sikhs, and the remaining of other communities. How many belonged to the other
153
+ communities?
154
+
155
+
156
+ Answer: (E) 90
157
+
158
+
159
+ Confidence Level: 90%
160
+
161
+
162
+ Explanation: First, calculate the total number of boys in each religion:
163
+
164
+ Christians: 100% - (44% + 28% + 10% + other) = 28%
165
+
166
+
167
+ To find the number of Christians, multiply the total number of boys by the percentage
168
+ of Christians:
169
+
170
+ 28% \* 450 = 125
171
+
172
+
173
+ Now calculate the number of boys in other communities:
174
+
175
+ 5% + 2% = 7%
176
+
177
+ 7% \* 450 = 315
178
+
179
+
180
+ Subtract the number of Christians from the total number of boys:
181
+
182
+ 450 - 125 = 325
183
+
184
+
185
+ The number of boys in other communities is 325, but this includes Sikhs, which
186
+ are not part of "other communities." So, to find the number of boys in other communities
187
+ excluding Sikhs, subtract the number of Sikhs:
188
+
189
+ 325 - 10% \* 450 = 325 - 45 = 280
190
+
191
+
192
+ So, the number of boys in other communities excluding Sikhs is 280, which corresponds
193
+ to option (E).'
194
+ - text: '
195
+
196
+
197
+ Human: 2. Determine the size and shape of your raised garden bed and purchase
198
+ appropriate materials.
199
+
200
+
201
+ Assistant: <sep> The size and shape of your raised garden bed will depend on
202
+ your available space and the type of plants you want to grow. You can purchase
203
+ materials such as wood, bricks, or cinder blocks to create the walls of your raised
204
+ bed. Make sure to measure and plan accordingly before purchasing the materials.'
205
+ - text: '
206
+
207
+
208
+ Human: 27 : #define DEBUG_TYPE "globalisel-utils"
209
+
210
+ 53 : // Assume physical registers are properly constrained.
211
+
212
+ 71 : "Register class constraint is required unless either
213
+ the "
214
+
215
+ 82 : // and they never reach this function.
216
+
217
+ 101 : // There''s nothing to be done on non-register operands.
218
+
219
+ 109 : // Physical registers don''t need to be constrained.
220
+
221
+ 114 : // to be constrained.
222
+
223
+ 119 : // insert COPYs if that''s impossible.
224
+
225
+ 120 : // constrainOperandRegClass does that for us.
226
+
227
+ 138 : // a side-effect of some sort.
228
+
229
+ 143 : // Instructions without side-effects are dead iff they only
230
+ define dead vregs.
231
+
232
+ 162 : // makes the diagnostic less useful) or if we''re going to
233
+ emit a raw error.
234
+
235
+ 179 : // Printing MI is expensive; only do it if expensive remarks
236
+ are enabled. Based on the passage above, What is the purpose of the DEBUG_TYPE
237
+ macro defined in line 27?
238
+
239
+
240
+ Assistant: <sep> The purpose of the DEBUG_TYPE macro defined in line 27 is to
241
+ serve as a custom logger in the GlobalISelUtils.cpp code. When instantiated, it
242
+ sets a custom type identifier for logging messages during the compilation process.
243
+ This helps to categorize and filter logging messages related to GlobalISelUtils
244
+ in the compiler''s output, making it easier to track and diagnose issues specifically
245
+ related to this utility.'
246
+ metrics:
247
+ - accuracy
248
+ pipeline_tag: text-classification
249
+ library_name: setfit
250
+ inference: false
251
+ base_model: sentence-transformers/all-mpnet-base-v2
252
+ model-index:
253
+ - name: SetFit with sentence-transformers/all-mpnet-base-v2
254
+ results:
255
+ - task:
256
+ type: text-classification
257
+ name: Text Classification
258
+ dataset:
259
+ name: Unknown
260
+ type: unknown
261
+ split: test
262
+ metrics:
263
+ - type: accuracy
264
+ value: 0.7
265
+ name: Accuracy
266
+ ---
267
+
268
+ # SetFit with sentence-transformers/all-mpnet-base-v2
269
+
270
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification.
271
+
272
+ The model has been trained using an efficient few-shot learning technique that involves:
273
+
274
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
275
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
276
+
277
+ ## Model Details
278
+
279
+ ### Model Description
280
+ - **Model Type:** SetFit
281
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
282
+ - **Classification head:** a MultiOutputClassifier instance
283
+ - **Maximum Sequence Length:** 384 tokens
284
+ <!-- - **Number of Classes:** Unknown -->
285
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
286
+ <!-- - **Language:** Unknown -->
287
+ <!-- - **License:** Unknown -->
288
+
289
+ ### Model Sources
290
+
291
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
292
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
293
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
294
+
295
+ ## Evaluation
296
+
297
+ ### Metrics
298
+ | Label | Accuracy |
299
+ |:--------|:---------|
300
+ | **all** | 0.7 |
301
+
302
+ ## Uses
303
+
304
+ ### Direct Use for Inference
305
+
306
+ First install the SetFit library:
307
+
308
+ ```bash
309
+ pip install setfit
310
+ ```
311
+
312
+ Then you can load this model and run inference.
313
+
314
+ ```python
315
+ from setfit import SetFitModel
316
+
317
+ # Download from the 🤗 Hub
318
+ model = SetFitModel.from_pretrained("osmedi/LLM_response_evaluator")
319
+ # Run inference
320
+ preds = model("
321
+
322
+ Human: 2. Determine the size and shape of your raised garden bed and purchase appropriate materials.
323
+
324
+ Assistant: <sep> The size and shape of your raised garden bed will depend on your available space and the type of plants you want to grow. You can purchase materials such as wood, bricks, or cinder blocks to create the walls of your raised bed. Make sure to measure and plan accordingly before purchasing the materials.")
325
+ ```
326
+
327
+ <!--
328
+ ### Downstream Use
329
+
330
+ *List how someone could finetune this model on their own dataset.*
331
+ -->
332
+
333
+ <!--
334
+ ### Out-of-Scope Use
335
+
336
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
337
+ -->
338
+
339
+ <!--
340
+ ## Bias, Risks and Limitations
341
+
342
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
343
+ -->
344
+
345
+ <!--
346
+ ### Recommendations
347
+
348
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
349
+ -->
350
+
351
+ ## Training Details
352
+
353
+ ### Training Set Metrics
354
+ | Training set | Min | Median | Max |
355
+ |:-------------|:----|:---------|:------|
356
+ | Word count | 7 | 280.0747 | 15755 |
357
+
358
+ ### Training Hyperparameters
359
+ - batch_size: (8, 8)
360
+ - num_epochs: (1, 1)
361
+ - max_steps: -1
362
+ - sampling_strategy: oversampling
363
+ - num_iterations: 2
364
+ - body_learning_rate: (2e-05, 2e-05)
365
+ - head_learning_rate: 2e-05
366
+ - loss: CosineSimilarityLoss
367
+ - distance_metric: cosine_distance
368
+ - margin: 0.25
369
+ - end_to_end: False
370
+ - use_amp: False
371
+ - warmup_proportion: 0.1
372
+ - l2_weight: 0.01
373
+ - seed: 42
374
+ - eval_max_steps: -1
375
+ - load_best_model_at_end: False
376
+
377
+ ### Training Results
378
+ | Epoch | Step | Training Loss | Validation Loss |
379
+ |:------:|:----:|:-------------:|:---------------:|
380
+ | 0.0011 | 1 | 0.593 | - |
381
+ | 0.0526 | 50 | 0.3063 | - |
382
+ | 0.1053 | 100 | 0.2582 | - |
383
+ | 0.1579 | 150 | 0.2625 | - |
384
+ | 0.2105 | 200 | 0.2477 | - |
385
+ | 0.2632 | 250 | 0.2553 | - |
386
+ | 0.3158 | 300 | 0.2473 | - |
387
+ | 0.3684 | 350 | 0.2442 | - |
388
+ | 0.4211 | 400 | 0.2368 | - |
389
+ | 0.4737 | 450 | 0.2291 | - |
390
+ | 0.5263 | 500 | 0.229 | - |
391
+ | 0.5789 | 550 | 0.224 | - |
392
+ | 0.6316 | 600 | 0.1974 | - |
393
+ | 0.6842 | 650 | 0.2138 | - |
394
+ | 0.7368 | 700 | 0.208 | - |
395
+ | 0.7895 | 750 | 0.1936 | - |
396
+ | 0.8421 | 800 | 0.2061 | - |
397
+ | 0.8947 | 850 | 0.1931 | - |
398
+ | 0.9474 | 900 | 0.1868 | - |
399
+ | 1.0 | 950 | 0.186 | - |
400
+
401
+ ### Framework Versions
402
+ - Python: 3.10.12
403
+ - SetFit: 1.1.0
404
+ - Sentence Transformers: 3.3.1
405
+ - Transformers: 4.44.2
406
+ - PyTorch: 2.5.1+cu121
407
+ - Datasets: 3.2.0
408
+ - Tokenizers: 0.19.1
409
+
410
+ ## Citation
411
+
412
+ ### BibTeX
413
+ ```bibtex
414
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
415
+ doi = {10.48550/ARXIV.2209.11055},
416
+ url = {https://arxiv.org/abs/2209.11055},
417
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
418
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
419
+ title = {Efficient Few-Shot Learning Without Prompts},
420
+ publisher = {arXiv},
421
+ year = {2022},
422
+ copyright = {Creative Commons Attribution 4.0 International}
423
+ }
424
+ ```
425
+
426
+ <!--
427
+ ## Glossary
428
+
429
+ *Clearly define terms in order to be accessible across audiences.*
430
+ -->
431
+
432
+ <!--
433
+ ## Model Card Authors
434
+
435
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
436
+ -->
437
+
438
+ <!--
439
+ ## Model Card Contact
440
+
441
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
442
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e26f4cd5a13c9e2c3a484495da2b3c86980030ece95285a9a4df0c5d18e1d6e8
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90bd19c676dc8baa771b4becc538417857d509dd84f84d90c89bdbcd3b929f78
3
+ size 7235
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff