|
from diffusers import FluxControlPipeline, FluxTransformer2DModel |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
import torch |
|
|
|
from diffusers.image_processor import PipelineImageInput |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput |
|
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps, XLA_AVAILABLE |
|
|
|
|
|
class Flex2Pipeline(FluxControlPipeline): |
|
def __init__( |
|
self, |
|
scheduler, |
|
vae, |
|
text_encoder, |
|
tokenizer, |
|
text_encoder_2, |
|
tokenizer_2, |
|
transformer, |
|
): |
|
super().__init__(scheduler, vae, text_encoder, tokenizer, text_encoder_2, tokenizer_2, transformer) |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
max_sequence_length=None, |
|
inpaint_image=None, |
|
inpaint_mask=None, |
|
control_image=None, |
|
): |
|
super().check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
if inpaint_image is not None and inpaint_mask is None: |
|
raise ValueError( |
|
"If `inpaint_image` is passed, `inpaint_mask` must be passed as well. " |
|
"Please make sure to pass both `inpaint_image` and `inpaint_mask`." |
|
) |
|
if inpaint_mask is not None and inpaint_image is None: |
|
raise ValueError( |
|
"If `inpaint_mask` is passed, `inpaint_image` must be passed as well. " |
|
"Please make sure to pass both `inpaint_image` and `inpaint_mask`." |
|
) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
inpaint_image: Optional[PipelineImageInput] = None, |
|
inpaint_mask: Optional[PipelineImageInput] = None, |
|
control_image: Optional[PipelineImageInput] = None, |
|
control_strength: Optional[float] = 1.0, |
|
control_stop: Optional[float] = 1.0, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 28, |
|
sigmas: Optional[List[float]] = None, |
|
guidance_scale: float = 3.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
will be used instead |
|
inpaint_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: |
|
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): |
|
The image to be inpainted. |
|
inpaint_mask (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: |
|
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): |
|
A black and white mask to be used for inpainting. The white pixels are the areas to be inpainted, while the |
|
black pixels are the areas to be kept. |
|
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: |
|
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): |
|
The control image (line, depth, pose, etc.) to be used for the generation. The control image |
|
control_strength (`float`, *optional*, defaults to 1.0): |
|
The strength of the control image. The higher the value, the more the control image will be used to |
|
guide the generation. The lower the value, the less the control image will be used to guide the |
|
generation. |
|
control_stop (`float`, *optional*, defaults to 1.0): |
|
The percentage of the generation to drop out the control. 0.0 to 1.0. 0.5 mean the control will be dropped |
|
out at 50% of the generation. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
will be used. |
|
guidance_scale (`float`, *optional*, defaults to 3.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` |
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated |
|
images. |
|
""" |
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
text_ids, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
|
|
|
|
|
|
num_control_channels = 33 |
|
num_channels_latents = num_channels_latents - num_control_channels |
|
|
|
control_latents = None |
|
inpaint_latents = None |
|
inpaint_latents_mask = None |
|
|
|
latent_height = height // self.vae_scale_factor |
|
latent_width = width // self.vae_scale_factor |
|
|
|
|
|
|
|
if control_image is None: |
|
control_latents = torch.zeros( |
|
batch_size * num_images_per_prompt, |
|
16, |
|
latent_height, |
|
latent_width, |
|
device=device, |
|
dtype=self.vae.dtype, |
|
) |
|
else: |
|
control_image = self.prepare_image( |
|
image=control_image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=self.vae.dtype, |
|
) |
|
control_image = self.vae.encode(control_image).latent_dist.sample(generator=generator) |
|
control_latents = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
|
|
|
|
control_latents = control_latents * control_strength |
|
|
|
if inpaint_image is None and inpaint_mask is None: |
|
inpaint_latents = torch.zeros( |
|
batch_size * num_images_per_prompt, |
|
16, |
|
latent_height, |
|
latent_width, |
|
device=device, |
|
dtype=self.vae.dtype, |
|
) |
|
inpaint_latents_mask = torch.ones( |
|
batch_size * num_images_per_prompt, |
|
1, |
|
latent_height, |
|
latent_width, |
|
device=device, |
|
dtype=self.vae.dtype, |
|
) |
|
else: |
|
inpaint_image = self.prepare_image( |
|
image=inpaint_image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=self.vae.dtype, |
|
) |
|
inpaint_image = self.vae.encode(inpaint_image).latent_dist.sample(generator=generator) |
|
inpaint_latents = (inpaint_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
height_inpaint_image, width_inpaint_image = control_image.shape[2:] |
|
|
|
inpaint_mask = self.prepare_image( |
|
image=inpaint_mask, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=self.vae.dtype, |
|
) |
|
|
|
inpaint_mask = inpaint_mask[:, 0:1, :, :] * 0.5 + 0.5 |
|
|
|
inpaint_latents_mask = F.interpolate(inpaint_mask, size=(height_inpaint_image, width_inpaint_image), mode="bilinear", align_corners=False) |
|
|
|
|
|
inpaint_latents = inpaint_latents * (1 - inpaint_latents_mask) |
|
|
|
|
|
latent_controls = torch.cat([inpaint_latents, inpaint_latents_mask, control_latents], dim=1) |
|
latent_no_controls = torch.cat([inpaint_latents, inpaint_latents_mask, torch.zeros_like(control_latents)], dim=1) |
|
|
|
|
|
height_latent_controls, width_latent_controls = latent_controls.shape[2:] |
|
packed_latent_controls = self._pack_latents( |
|
latent_controls, |
|
batch_size * num_images_per_prompt, |
|
num_control_channels, |
|
height_latent_controls, |
|
width_latent_controls, |
|
) |
|
packed_latent_no_controls = self._pack_latents( |
|
latent_no_controls, |
|
batch_size * num_images_per_prompt, |
|
num_control_channels, |
|
height_latent_controls, |
|
width_latent_controls, |
|
) |
|
|
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.get("base_image_seq_len", 256), |
|
self.scheduler.config.get("max_image_seq_len", 4096), |
|
self.scheduler.config.get("base_shift", 0.5), |
|
self.scheduler.config.get("max_shift", 1.15), |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
sigmas=sigmas, |
|
mu=mu, |
|
) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
if self.transformer.config.guidance_embeds: |
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) |
|
guidance = guidance.expand(latents.shape[0]) |
|
else: |
|
guidance = None |
|
|
|
control_cutoff = int(len(timesteps) * control_stop) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
control_latents = packed_latent_controls if i < control_cutoff else packed_latent_no_controls |
|
|
|
latent_model_input = torch.cat([latents, control_latents], dim=2) |
|
|
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latent_model_input, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if output_type == "latent": |
|
image = latents |
|
else: |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return FluxPipelineOutput(images=image) |
|
|
|
|