lbourdois commited on
Commit
c68402e
·
verified ·
1 Parent(s): 0b8888d

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +124 -113
README.md CHANGED
@@ -1,114 +1,125 @@
1
- ---
2
- library_name: transformers
3
- datasets:
4
- - lmsys/lmsys-chat-1m
5
- base_model:
6
- - Qwen/Qwen2.5-14B-Instruct
7
- pipeline_tag: text-generation
8
- language:
9
- - en
10
- - zh
11
- license: apache-2.0
12
- ---
13
-
14
- # 0x Lite
15
-
16
- ## We'd like to give a special thanks to ShuttleAI for making this possible.
17
-
18
- ## Join our Discord: https://discord.gg/J9AEasuK5e
19
-
20
- ## Overview
21
- 0x Lite is a state-of-the-art language model developed by Ozone AI, designed to deliver ultra-high-quality text generation capabilities while maintaining a compact and efficient architecture. Built on the latest advancements in natural language processing, 0x Lite is optimized for both speed and accuracy, making it a strong contender in the space of language models. It is particularly well-suited for applications where resource constraints are a concern, offering a lightweight alternative to larger models like GPT while still delivering comparable performance.
22
-
23
- ## Features
24
- - **Compact and Efficient**: 0x Lite is designed to be lightweight, making it suitable for deployment on resource-constrained devices.
25
- - **High-Quality Text Generation**: The model is trained on a diverse dataset to generate coherent, contextually relevant, and human-like text.
26
- - **Versatile Applications**: Suitable for tasks such as text completion, summarization, translation, and more.
27
- - **Fast Inference**: Optimized for speed, ensuring quick and efficient responses.
28
- - **Open-Source and Community-Driven**: Built with transparency and collaboration in mind, 0x Lite is available for the community to use, modify, and improve.
29
-
30
- ## Use Cases
31
- - **Text Completion**: Assist users with writing tasks by generating coherent and contextually appropriate text.
32
- - **Summarization**: Summarize long documents into concise and meaningful summaries.
33
- - **Chatbots**: Power conversational AI systems with 0x Lite.
34
- - **Content Creation**: Generate creative content such as stories, poems, or marketing copy.
35
- - **Education**: Assist students with research, essay writing, and language learning.
36
-
37
- ## Getting Started
38
- To get started with 0x Lite, follow these steps:
39
-
40
- 1. **Install the Model**:
41
- ```bash
42
- pip install transformers
43
- ```
44
-
45
- 2. **Load the Model**:
46
- ```python
47
- from transformers import AutoModelForCausalLM, AutoTokenizer
48
-
49
- model_name = "ozone-ai/0x-lite"
50
- tokenizer = AutoTokenizer.from_pretrained(model_name)
51
- model = AutoModelForCausalLM.from_pretrained(model_name)
52
- ```
53
-
54
- 3. **Generate Text**:
55
- ```python
56
- input_text = "Once upon a time"
57
- inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
58
- outputs = model.generate(**inputs, max_length=50)
59
- generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
60
- print(generated_text)
61
- ```
62
-
63
- # Chinese
64
-
65
- # 0x Lite
66
-
67
- ## 概览
68
- 0x Lite 是由 Ozone AI 开发的最先进的语言模型,旨在提供超高质量的文本生成能力,同时保持紧凑和高效的架构。基于自然语言处理领域的最新进展,
69
- 0x Lite 在速度和准确性方面都进行了优化,在语言模型领域中是一个强有力的竞争者。它特别适合资源受限的应用场景,为那些希望获得与 GPT 等大型模
70
- 型相当性能但又需要轻量级解决方案的用户提供了一个理想选择。
71
-
72
- ## 特性
73
- - **紧凑高效**:0x Lite 被设计成轻量化,适用于资源受限设备上的部署。
74
- - **高质量文本生成**:该模型经过多样化的数据集训练,能够生成连贯、上下文相关且接近人类水平的文本。
75
- - **多用途应用**:适合完成如文本补全、摘要、翻译等任务。
76
- - **快速推理**:优化了速度,确保迅速高效的响应。
77
- - **开源及社区驱动**:秉持透明和协作的理念,0x Lite 向社区开放,供用户使用、修改和完善。
78
-
79
- ## 应用场景
80
- - **文本补全**:通过生成连贯且上下文相关的文本帮助用户完成写作任务。
81
- - **摘要**:将长文档总结为简短而有意义的摘要。
82
- - **聊天机器人**:利用 0x Lite 动力支持会话式 AI 系统。
83
- - **内容创作**:生成创意性内容,如故事、诗歌或营销文案。
84
- - **教育**:协助学生进行研究、写作及语言学习。
85
-
86
- ## 入门指南
87
- 要开始使用 0x Lite,请按照以下步骤操作:
88
-
89
- 1. **安装模型**:
90
- ```bash
91
- pip install transformers
92
- ```
93
-
94
- 2. **加载模型**:
95
- ```python
96
- from transformers import AutoModelForCausalLM, AutoTokenizer
97
-
98
- model_name = "ozone-ai/0x-lite"
99
- tokenizer = AutoTokenizer.from_pretrained(model_name)
100
- model = AutoModelForCausalLM.from_pretrained(model_name)
101
- ```
102
-
103
- 3. **生成文本**:
104
- ```python
105
- input_text = "从前有一段时间"
106
- inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
107
- outputs = model.generate(**inputs, max_length=50)
108
- generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
109
- print(generated_text)
110
- ```
111
-
112
- ---
113
-
 
 
 
 
 
 
 
 
 
 
 
114
  Translated by 0x-Lite
 
1
+ ---
2
+ library_name: transformers
3
+ datasets:
4
+ - lmsys/lmsys-chat-1m
5
+ base_model:
6
+ - Qwen/Qwen2.5-14B-Instruct
7
+ pipeline_tag: text-generation
8
+ language:
9
+ - zho
10
+ - eng
11
+ - fra
12
+ - spa
13
+ - por
14
+ - deu
15
+ - ita
16
+ - rus
17
+ - jpn
18
+ - kor
19
+ - vie
20
+ - tha
21
+ - ara
22
+ license: apache-2.0
23
+ ---
24
+
25
+ # 0x Lite
26
+
27
+ ## We'd like to give a special thanks to ShuttleAI for making this possible.
28
+
29
+ ## Join our Discord: https://discord.gg/J9AEasuK5e
30
+
31
+ ## Overview
32
+ 0x Lite is a state-of-the-art language model developed by Ozone AI, designed to deliver ultra-high-quality text generation capabilities while maintaining a compact and efficient architecture. Built on the latest advancements in natural language processing, 0x Lite is optimized for both speed and accuracy, making it a strong contender in the space of language models. It is particularly well-suited for applications where resource constraints are a concern, offering a lightweight alternative to larger models like GPT while still delivering comparable performance.
33
+
34
+ ## Features
35
+ - **Compact and Efficient**: 0x Lite is designed to be lightweight, making it suitable for deployment on resource-constrained devices.
36
+ - **High-Quality Text Generation**: The model is trained on a diverse dataset to generate coherent, contextually relevant, and human-like text.
37
+ - **Versatile Applications**: Suitable for tasks such as text completion, summarization, translation, and more.
38
+ - **Fast Inference**: Optimized for speed, ensuring quick and efficient responses.
39
+ - **Open-Source and Community-Driven**: Built with transparency and collaboration in mind, 0x Lite is available for the community to use, modify, and improve.
40
+
41
+ ## Use Cases
42
+ - **Text Completion**: Assist users with writing tasks by generating coherent and contextually appropriate text.
43
+ - **Summarization**: Summarize long documents into concise and meaningful summaries.
44
+ - **Chatbots**: Power conversational AI systems with 0x Lite.
45
+ - **Content Creation**: Generate creative content such as stories, poems, or marketing copy.
46
+ - **Education**: Assist students with research, essay writing, and language learning.
47
+
48
+ ## Getting Started
49
+ To get started with 0x Lite, follow these steps:
50
+
51
+ 1. **Install the Model**:
52
+ ```bash
53
+ pip install transformers
54
+ ```
55
+
56
+ 2. **Load the Model**:
57
+ ```python
58
+ from transformers import AutoModelForCausalLM, AutoTokenizer
59
+
60
+ model_name = "ozone-ai/0x-lite"
61
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
62
+ model = AutoModelForCausalLM.from_pretrained(model_name)
63
+ ```
64
+
65
+ 3. **Generate Text**:
66
+ ```python
67
+ input_text = "Once upon a time"
68
+ inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
69
+ outputs = model.generate(**inputs, max_length=50)
70
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
71
+ print(generated_text)
72
+ ```
73
+
74
+ # Chinese
75
+
76
+ # 0x Lite
77
+
78
+ ## 概览
79
+ 0x Lite 是由 Ozone AI 开发的最先进的语言模型,旨在提供超高质量的文本生成能力,同时保持紧凑和高效的架构。基于自然语言处理领域的最新进展,
80
+ 0x Lite 在速度和准确性方面都进行了优化,在语言模型领域中是一个强有力的竞争者。它特别适合资源受限的应用场景,为那些希望获得与 GPT 等大型模
81
+ 型相当性能但又需要轻量级解决方案的用户提供了一个理想选择。
82
+
83
+ ## 特性
84
+ - **紧凑高效**:0x Lite 被设计成轻量化,适用于资源受限设备上的部署。
85
+ - **高质量文本生成**:该模型经过多样化的数据集训练,能够生成连贯、上下文相关且接近人类水平的文本。
86
+ - **多用途应用**:适合完成如文本补全、摘要、翻译等任务。
87
+ - **快速推理**:优化了速度,确保迅速高效的响应。
88
+ - **开源及社区驱动**:秉持透明和协作的理念,0x Lite 向社区开放,供用户使用、修改和完善。
89
+
90
+ ## 应用场景
91
+ - **文本补全**:通过生成连贯且上下文相关的文本帮助用户完成写作任务。
92
+ - **摘要**:将长文档总结为简短而有意义的摘要。
93
+ - **聊天机器人**:利用 0x Lite 动力支持会话式 AI 系统。
94
+ - **内容创作**:生成创意性内容,如故事、诗歌或营销文案。
95
+ - **教育**:协助学生进行研究、写作及语言学习。
96
+
97
+ ## 入门指南
98
+ 要开始使用 0x Lite,请按照以下步骤操作:
99
+
100
+ 1. **安装模型**:
101
+ ```bash
102
+ pip install transformers
103
+ ```
104
+
105
+ 2. **加载模型**:
106
+ ```python
107
+ from transformers import AutoModelForCausalLM, AutoTokenizer
108
+
109
+ model_name = "ozone-ai/0x-lite"
110
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
111
+ model = AutoModelForCausalLM.from_pretrained(model_name)
112
+ ```
113
+
114
+ 3. **生成文本**:
115
+ ```python
116
+ input_text = "从前有一段时间"
117
+ inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
118
+ outputs = model.generate(**inputs, max_length=50)
119
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
120
+ print(generated_text)
121
+ ```
122
+
123
+ ---
124
+
125
  Translated by 0x-Lite