Improve language tag
Browse filesHi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.
README.md
CHANGED
@@ -1,114 +1,125 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
datasets:
|
4 |
-
- lmsys/lmsys-chat-1m
|
5 |
-
base_model:
|
6 |
-
- Qwen/Qwen2.5-14B-Instruct
|
7 |
-
pipeline_tag: text-generation
|
8 |
-
language:
|
9 |
-
-
|
10 |
-
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
- **
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
```
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
```
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
Translated by 0x-Lite
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- lmsys/lmsys-chat-1m
|
5 |
+
base_model:
|
6 |
+
- Qwen/Qwen2.5-14B-Instruct
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
language:
|
9 |
+
- zho
|
10 |
+
- eng
|
11 |
+
- fra
|
12 |
+
- spa
|
13 |
+
- por
|
14 |
+
- deu
|
15 |
+
- ita
|
16 |
+
- rus
|
17 |
+
- jpn
|
18 |
+
- kor
|
19 |
+
- vie
|
20 |
+
- tha
|
21 |
+
- ara
|
22 |
+
license: apache-2.0
|
23 |
+
---
|
24 |
+
|
25 |
+
# 0x Lite
|
26 |
+
|
27 |
+
## We'd like to give a special thanks to ShuttleAI for making this possible.
|
28 |
+
|
29 |
+
## Join our Discord: https://discord.gg/J9AEasuK5e
|
30 |
+
|
31 |
+
## Overview
|
32 |
+
0x Lite is a state-of-the-art language model developed by Ozone AI, designed to deliver ultra-high-quality text generation capabilities while maintaining a compact and efficient architecture. Built on the latest advancements in natural language processing, 0x Lite is optimized for both speed and accuracy, making it a strong contender in the space of language models. It is particularly well-suited for applications where resource constraints are a concern, offering a lightweight alternative to larger models like GPT while still delivering comparable performance.
|
33 |
+
|
34 |
+
## Features
|
35 |
+
- **Compact and Efficient**: 0x Lite is designed to be lightweight, making it suitable for deployment on resource-constrained devices.
|
36 |
+
- **High-Quality Text Generation**: The model is trained on a diverse dataset to generate coherent, contextually relevant, and human-like text.
|
37 |
+
- **Versatile Applications**: Suitable for tasks such as text completion, summarization, translation, and more.
|
38 |
+
- **Fast Inference**: Optimized for speed, ensuring quick and efficient responses.
|
39 |
+
- **Open-Source and Community-Driven**: Built with transparency and collaboration in mind, 0x Lite is available for the community to use, modify, and improve.
|
40 |
+
|
41 |
+
## Use Cases
|
42 |
+
- **Text Completion**: Assist users with writing tasks by generating coherent and contextually appropriate text.
|
43 |
+
- **Summarization**: Summarize long documents into concise and meaningful summaries.
|
44 |
+
- **Chatbots**: Power conversational AI systems with 0x Lite.
|
45 |
+
- **Content Creation**: Generate creative content such as stories, poems, or marketing copy.
|
46 |
+
- **Education**: Assist students with research, essay writing, and language learning.
|
47 |
+
|
48 |
+
## Getting Started
|
49 |
+
To get started with 0x Lite, follow these steps:
|
50 |
+
|
51 |
+
1. **Install the Model**:
|
52 |
+
```bash
|
53 |
+
pip install transformers
|
54 |
+
```
|
55 |
+
|
56 |
+
2. **Load the Model**:
|
57 |
+
```python
|
58 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
59 |
+
|
60 |
+
model_name = "ozone-ai/0x-lite"
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
62 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
63 |
+
```
|
64 |
+
|
65 |
+
3. **Generate Text**:
|
66 |
+
```python
|
67 |
+
input_text = "Once upon a time"
|
68 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
69 |
+
outputs = model.generate(**inputs, max_length=50)
|
70 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
71 |
+
print(generated_text)
|
72 |
+
```
|
73 |
+
|
74 |
+
# Chinese
|
75 |
+
|
76 |
+
# 0x Lite
|
77 |
+
|
78 |
+
## 概览
|
79 |
+
0x Lite 是由 Ozone AI 开发的最先进的语言模型,旨在提供超高质量的文本生成能力,同时保持紧凑和高效的架构。基于自然语言处理领域的最新进展,
|
80 |
+
0x Lite 在速度和准确性方面都进行了优化,在语言模型领域中是一个强有力的竞争者。它特别适合资源受限的应用场景,为那些希望获得与 GPT 等大型模
|
81 |
+
型相当性能但又需要轻量级解决方案的用户提供了一个理想选择。
|
82 |
+
|
83 |
+
## 特性
|
84 |
+
- **紧凑高效**:0x Lite 被设计成轻量化,适用于资源受限设备上的部署。
|
85 |
+
- **高质量文本生成**:该模型经过多样化的数据集训练,能够生成连贯、上下文相关且接近人类水平的文本。
|
86 |
+
- **多用途应用**:适合完成如文本补全、摘要、翻译等任务。
|
87 |
+
- **快速推理**:优化了速度,确保迅速高效的响应。
|
88 |
+
- **开源及社区驱动**:秉持透明和协作的理念,0x Lite 向社区开放,供用户使用、修改和完善。
|
89 |
+
|
90 |
+
## 应用场景
|
91 |
+
- **文本补全**:通过生成连贯且上下文相关的文本帮助用户完成写作任务。
|
92 |
+
- **摘要**:将长文档总结为简短而有意义的摘要。
|
93 |
+
- **聊天机器人**:利用 0x Lite 动力支持会话式 AI 系统。
|
94 |
+
- **内容创作**:生成创意性内容,如故事、诗歌或营销文案。
|
95 |
+
- **教育**:协助学生进行研究、写作及语言学习。
|
96 |
+
|
97 |
+
## 入门指南
|
98 |
+
要开始使用 0x Lite,请按照以下步骤操作:
|
99 |
+
|
100 |
+
1. **安装模型**:
|
101 |
+
```bash
|
102 |
+
pip install transformers
|
103 |
+
```
|
104 |
+
|
105 |
+
2. **加载模型**:
|
106 |
+
```python
|
107 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
108 |
+
|
109 |
+
model_name = "ozone-ai/0x-lite"
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
111 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
112 |
+
```
|
113 |
+
|
114 |
+
3. **生成文本**:
|
115 |
+
```python
|
116 |
+
input_text = "从前有一段时间"
|
117 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
118 |
+
outputs = model.generate(**inputs, max_length=50)
|
119 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
120 |
+
print(generated_text)
|
121 |
+
```
|
122 |
+
|
123 |
+
---
|
124 |
+
|
125 |
Translated by 0x-Lite
|