Upload modeling_siglip.py
Browse files- modeling_siglip.py +57 -0
modeling_siglip.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
from transformers import SiglipVisionModel, SiglipPreTrainedModel, SiglipVisionConfig
|
| 7 |
+
from transformers.utils import ModelOutput
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@dataclass
|
| 11 |
+
class SiglipForImageClassifierOutput(ModelOutput):
|
| 12 |
+
loss: torch.FloatTensor | None = None
|
| 13 |
+
logits: torch.FloatTensor | None = None
|
| 14 |
+
pooler_output: torch.FloatTensor | None = None
|
| 15 |
+
hidden_states: tuple[torch.FloatTensor, ...] | None = None
|
| 16 |
+
attentions: tuple[torch.FloatTensor, ...] | None = None
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class SiglipForImageClassification(SiglipPreTrainedModel):
|
| 20 |
+
config_class = SiglipVisionConfig
|
| 21 |
+
main_input_name = "pixel_values"
|
| 22 |
+
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
config,
|
| 26 |
+
):
|
| 27 |
+
super().__init__(config)
|
| 28 |
+
|
| 29 |
+
self.num_labels = config.num_labels
|
| 30 |
+
self.siglip = SiglipVisionModel(config)
|
| 31 |
+
|
| 32 |
+
# Classifier head
|
| 33 |
+
self.classifier = (
|
| 34 |
+
nn.Linear(config.hidden_size, config.num_labels)
|
| 35 |
+
if config.num_labels > 0
|
| 36 |
+
else nn.Identity()
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Initialize weights and apply final processing
|
| 40 |
+
self.post_init()
|
| 41 |
+
|
| 42 |
+
def forward(
|
| 43 |
+
self, pixel_values: torch.FloatTensor, labels: torch.LongTensor | None = None
|
| 44 |
+
):
|
| 45 |
+
outputs = self.siglip(pixel_values)
|
| 46 |
+
pooler_output = outputs.pooler_output
|
| 47 |
+
logits = self.classifier(pooler_output)
|
| 48 |
+
|
| 49 |
+
loss = None
|
| 50 |
+
|
| 51 |
+
return SiglipForImageClassifierOutput(
|
| 52 |
+
loss=loss,
|
| 53 |
+
logits=logits,
|
| 54 |
+
pooler_output=outputs.pooler_output,
|
| 55 |
+
hidden_states=outputs.hidden_states,
|
| 56 |
+
attentions=outputs.attentions,
|
| 57 |
+
)
|