p1atdev commited on
Commit
85b0b9d
·
verified ·
1 Parent(s): 19b72c4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -21
README.md CHANGED
@@ -5,6 +5,7 @@ base_model: SmilingWolf/wd-swinv2-tagger-v3
5
  inference: false
6
  tags:
7
  - wd-tagger
 
8
  ---
9
 
10
  # WD SwinV2 Tagger v3 with 🤗 transformers
@@ -13,6 +14,14 @@ Converted from [SmilingWolf/wd-swinv2-tagger-v3](https://huggingface.co/SmilingW
13
 
14
  ## Example
15
 
 
 
 
 
 
 
 
 
16
  ### Pipeline
17
 
18
  ```py
@@ -30,18 +39,10 @@ print(pipe("sample.webp", top_k=15))
30
  # {'label': 'dress', 'score': 0.9539461135864258},
31
  # {'label': 'hat', 'score': 0.9511678218841553},
32
  # {'label': 'outdoors', 'score': 0.9438753128051758},
33
- # {'label': 'sky', 'score': 0.9195725917816162},
34
- # {'label': 'sitting', 'score': 0.9178725481033325},
35
- # {'label': 'looking up', 'score': 0.9122412800788879},
36
- # {'label': 'short hair', 'score': 0.8630313873291016},
37
- # {'label': 'cloud', 'score': 0.8609118461608887},
38
- # {'label': 'brown hair', 'score': 0.7723952531814575},
39
- # {'label': 'short sleeves', 'score': 0.7649227380752563},
40
- # {'label': 'day', 'score': 0.7641971111297607},
41
- # {'label': 'rating:general', 'score': 0.7605368494987488},
42
- # {'label': 'white dress', 'score': 0.7596388459205627}]
43
  ```
44
 
 
45
  ### AutoModel
46
 
47
 
@@ -81,22 +82,40 @@ print(results) # rating tags and character tags are also included
81
  # 'dress': tensor(0.9539),
82
  # 'hat': tensor(0.9512),
83
  # 'outdoors': tensor(0.9439),
84
- # 'sky': tensor(0.9196),
85
- # 'sitting': tensor(0.9179),
86
- # 'looking up': tensor(0.9122),
87
- # 'short hair': tensor(0.8630),
88
- # 'cloud': tensor(0.8609),
89
- # 'brown hair': tensor(0.7724),
90
- # 'short sleeves': tensor(0.7649),
91
- # 'day': tensor(0.7642),
92
- # 'rating:general': tensor(0.7605),
93
  # ...
94
  ```
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  ## Labels
97
 
98
  All of rating tags have prefix `rating:` and character tags have prefix `character:`.
99
 
100
  - Rating tags: `rating:general`, `rating:sensitive`, ...
101
- - Character tags: `character:frieren`, `character:hatsune miku`, ...
102
-
 
5
  inference: false
6
  tags:
7
  - wd-tagger
8
+ - optimum
9
  ---
10
 
11
  # WD SwinV2 Tagger v3 with 🤗 transformers
 
14
 
15
  ## Example
16
 
17
+ [![](https://camo.githubusercontent.com/f5e0d0538a9c2972b5d413e0ace04cecd8efd828d133133933dfffec282a4e1b/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/gist/p1atdev/d420d9fcd5c8ea66d9e10918fc330741/wd-swinv2-tagger-v3-hf-pipe.ipynb)
18
+
19
+ ### Installation
20
+
21
+ ```bash
22
+ pip install optimum[onnxruntime] transformers
23
+ ```
24
+
25
  ### Pipeline
26
 
27
  ```py
 
39
  # {'label': 'dress', 'score': 0.9539461135864258},
40
  # {'label': 'hat', 'score': 0.9511678218841553},
41
  # {'label': 'outdoors', 'score': 0.9438753128051758},
42
+ # ...
 
 
 
 
 
 
 
 
 
43
  ```
44
 
45
+
46
  ### AutoModel
47
 
48
 
 
82
  # 'dress': tensor(0.9539),
83
  # 'hat': tensor(0.9512),
84
  # 'outdoors': tensor(0.9439),
 
 
 
 
 
 
 
 
 
85
  # ...
86
  ```
87
 
88
+ ### Accelerate with 🤗 Optimum
89
+
90
+ Maybe about 30% faster and about 50% light weight model size than transformers version.
91
+
92
+ ```bash
93
+ pip install optimum[onnxruntime]
94
+ ```
95
+
96
+ ```diff
97
+ -from transformers import pipeline
98
+ +from optimum.pipelines import pipeline
99
+
100
+ pipe = pipeline(
101
+ "image-classification",
102
+ model="p1atdev/wd-swinv2-tagger-v3-hf",
103
+ trust_remote_code=True,
104
+ )
105
+
106
+ print(pipe("sample.webp", top_k=15))
107
+ #[{'label': '1girl', 'score': 0.9973934888839722},
108
+ # {'label': 'solo', 'score': 0.9719744324684143},
109
+ # {'label': 'dress', 'score': 0.9539461135864258},
110
+ # {'label': 'hat', 'score': 0.9511678218841553},
111
+ # {'label': 'outdoors', 'score': 0.9438753128051758},
112
+ # ...
113
+ ```
114
+
115
+
116
  ## Labels
117
 
118
  All of rating tags have prefix `rating:` and character tags have prefix `character:`.
119
 
120
  - Rating tags: `rating:general`, `rating:sensitive`, ...
121
+ - Character tags: `character:frieren`, `character:hatsune miku`, ...