pAce576 commited on
Commit
6e228c7
·
verified ·
1 Parent(s): 42c5f15

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -4
README.md CHANGED
@@ -1,6 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from transformers import AutoTokenizer, AutoModelForCausalLM
2
 
3
- # Load tokenizer and model
4
- model_name = "pAce576/llama3.2-1b-Instruct"
5
- tokenizer = AutoTokenizer.from_pretrained(model_name)
6
- model = AutoModelForCausalLM.from_pretrained(model_name)
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ tags:
7
+ - llama
8
+ - llama3
9
+ - causal-lm
10
+ - instruction-tuned
11
+ - hf-internal-testing
12
+ pipeline_tag: text-generation
13
+ ---
14
+
15
+ # 🦙 LLaMA3.2-1B-Instruct
16
+
17
+ `pAce576/llama3.2-1b-Instruct` is a 1.2 billion parameter language model based on Meta's LLaMA3 architecture. This model has been instruction-tuned for conversational and general-purpose natural language generation tasks.
18
+
19
+ ## 🧠 Model Details
20
+
21
+ - **Architecture**: LLaMA3.2 (custom 1.2B variant)
22
+ - **Base Model**: LLaMA3-like Transformer
23
+ - **Instruction Tuning**: Yes
24
+ - **Parameters**: ~1.2 billion
25
+ - **Layers**: Custom, designed for efficient inference on resource-constrained environments
26
+ - **Precision**: fp16 supported (also tested with int8/4-bit via quantization)
27
+
28
+ ## 📚 Intended Use
29
+
30
+ This model is intended for:
31
+
32
+ - Dialogue generation
33
+ - Instruction following
34
+ - Story writing
35
+ - Light reasoning tasks
36
+
37
+ **Example usage:**
38
+
39
+ ```python
40
  from transformers import AutoTokenizer, AutoModelForCausalLM
41
 
42
+ model = AutoModelForCausalLM.from_pretrained("pAce576/llama3.2-1b-Instruct")
43
+ tokenizer = AutoTokenizer.from_pretrained("pAce576/llama3.2-1b-Instruct")
44
+
45
+ prompt = "Explain gravity to a 5-year-old."
46
+ inputs = tokenizer(prompt, return_tensors="pt")
47
+ outputs = model.generate(**inputs, max_new_tokens=100)
48
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))