palpit commited on
Commit
71c490b
·
verified ·
1 Parent(s): 749476a

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,202 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.5-13b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../../data/output_model/lora/llava-v1.5-13b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "o_proj",
25
+ "down_proj",
26
+ "k_proj",
27
+ "gate_proj",
28
+ "up_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85e4922822ac583f7d43bb1a425f9b287441ca93b18840b9069b7ca35311b394
3
+ size 1001466944
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../../data/output_model/lora/llava-v1.5-13b",
3
+ "architectures": [
4
+ "LlavaLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 5120,
14
+ "image_aspect_ratio": "pad",
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 13824,
17
+ "max_length": 4096,
18
+ "max_position_embeddings": 4096,
19
+ "mm_hidden_size": 1024,
20
+ "mm_patch_merge_type": "flat",
21
+ "mm_projector_lr": 2e-05,
22
+ "mm_projector_type": "mlp2x_gelu",
23
+ "mm_resampler_type": null,
24
+ "mm_use_im_patch_token": false,
25
+ "mm_use_im_start_end": false,
26
+ "mm_vision_select_feature": "patch",
27
+ "mm_vision_select_layer": -2,
28
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
29
+ "model_type": "llava_llama",
30
+ "num_attention_heads": 40,
31
+ "num_hidden_layers": 40,
32
+ "num_key_value_heads": 40,
33
+ "pad_token_id": 0,
34
+ "pretraining_tp": 1,
35
+ "rms_norm_eps": 1e-05,
36
+ "rope_scaling": null,
37
+ "rope_theta": 10000.0,
38
+ "tie_word_embeddings": false,
39
+ "tokenizer_model_max_length": 2048,
40
+ "tokenizer_padding_side": "right",
41
+ "torch_dtype": "float16",
42
+ "transformers_version": "4.37.2",
43
+ "tune_mm_mlp_adapter": false,
44
+ "tune_mm_vision_resampler": false,
45
+ "unfreeze_mm_vision_tower": false,
46
+ "use_cache": true,
47
+ "use_mm_proj": true,
48
+ "vocab_size": 32000
49
+ }
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d424214b32f5a830e574c479951f80399efe4cf31585f2685685f8318e2be1cd
3
+ size 62937264
trainer_state.json ADDED
@@ -0,0 +1,1020 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 165,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "learning_rate": 4e-05,
14
+ "loss": 0.7308,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.04,
19
+ "learning_rate": 8e-05,
20
+ "loss": 0.7,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.05,
25
+ "learning_rate": 0.00012,
26
+ "loss": 0.6932,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.07,
31
+ "learning_rate": 0.00016,
32
+ "loss": 0.1717,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.09,
37
+ "learning_rate": 0.0002,
38
+ "loss": 0.1467,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.11,
43
+ "learning_rate": 0.0001999807240482065,
44
+ "loss": 0.5613,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.13,
49
+ "learning_rate": 0.0001999229036240723,
50
+ "loss": 0.6399,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.15,
55
+ "learning_rate": 0.00019982656101847162,
56
+ "loss": 0.5877,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.16,
61
+ "learning_rate": 0.0001996917333733128,
62
+ "loss": 0.6128,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.18,
67
+ "learning_rate": 0.0001995184726672197,
68
+ "loss": 0.5388,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.2,
73
+ "learning_rate": 0.00019930684569549264,
74
+ "loss": 0.5693,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.22,
79
+ "learning_rate": 0.00019905693404435773,
80
+ "loss": 0.5512,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.24,
85
+ "learning_rate": 0.00019876883405951377,
86
+ "loss": 0.5714,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.25,
91
+ "learning_rate": 0.00019844265680898918,
92
+ "loss": 0.6029,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.27,
97
+ "learning_rate": 0.00019807852804032305,
98
+ "loss": 0.6278,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.29,
103
+ "learning_rate": 0.00019767658813208726,
104
+ "loss": 0.6119,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.31,
109
+ "learning_rate": 0.00019723699203976766,
110
+ "loss": 0.5703,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.33,
115
+ "learning_rate": 0.00019675990923602598,
116
+ "loss": 0.5531,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.35,
121
+ "learning_rate": 0.00019624552364536473,
122
+ "loss": 0.553,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.36,
127
+ "learning_rate": 0.0001956940335732209,
128
+ "loss": 0.6646,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.38,
133
+ "learning_rate": 0.00019510565162951537,
134
+ "loss": 0.5766,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.4,
139
+ "learning_rate": 0.00019448060464668783,
140
+ "loss": 0.6177,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.42,
145
+ "learning_rate": 0.00019381913359224842,
146
+ "loss": 0.5593,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.44,
151
+ "learning_rate": 0.00019312149347588037,
152
+ "loss": 0.5543,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.45,
157
+ "learning_rate": 0.0001923879532511287,
158
+ "loss": 0.6438,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.47,
163
+ "learning_rate": 0.00019161879571171362,
164
+ "loss": 0.5968,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.49,
169
+ "learning_rate": 0.00019081431738250814,
170
+ "loss": 0.5542,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.51,
175
+ "learning_rate": 0.00018997482840522217,
176
+ "loss": 0.6355,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.53,
181
+ "learning_rate": 0.0001891006524188368,
182
+ "loss": 0.6028,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.55,
187
+ "learning_rate": 0.0001881921264348355,
188
+ "loss": 0.5958,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.56,
193
+ "learning_rate": 0.00018724960070727972,
194
+ "loss": 0.5749,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.58,
199
+ "learning_rate": 0.0001862734385977792,
200
+ "loss": 0.5875,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.6,
205
+ "learning_rate": 0.00018526401643540922,
206
+ "loss": 0.5472,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.62,
211
+ "learning_rate": 0.00018422172337162867,
212
+ "loss": 0.5826,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.64,
217
+ "learning_rate": 0.00018314696123025454,
218
+ "loss": 0.6219,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.65,
223
+ "learning_rate": 0.00018204014435255135,
224
+ "loss": 0.574,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.67,
229
+ "learning_rate": 0.00018090169943749476,
230
+ "loss": 0.556,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.69,
235
+ "learning_rate": 0.00017973206537727073,
236
+ "loss": 0.666,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.71,
241
+ "learning_rate": 0.00017853169308807448,
242
+ "loss": 0.6155,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.73,
247
+ "learning_rate": 0.0001773010453362737,
248
+ "loss": 0.6071,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.75,
253
+ "learning_rate": 0.0001760405965600031,
254
+ "loss": 0.5707,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.76,
259
+ "learning_rate": 0.0001747508326862597,
260
+ "loss": 0.5269,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.78,
265
+ "learning_rate": 0.00017343225094356855,
266
+ "loss": 0.6333,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.8,
271
+ "learning_rate": 0.00017208535967029188,
272
+ "loss": 0.5913,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.82,
277
+ "learning_rate": 0.00017071067811865476,
278
+ "loss": 0.5305,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.84,
283
+ "learning_rate": 0.0001693087362545636,
284
+ "loss": 0.5925,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.85,
289
+ "learning_rate": 0.0001678800745532942,
290
+ "loss": 0.6115,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.87,
295
+ "learning_rate": 0.00016642524379112817,
296
+ "loss": 0.5821,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.89,
301
+ "learning_rate": 0.00016494480483301836,
302
+ "loss": 0.5774,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.91,
307
+ "learning_rate": 0.00016343932841636456,
308
+ "loss": 0.6432,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.93,
313
+ "learning_rate": 0.00016190939493098344,
314
+ "loss": 0.6022,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.95,
319
+ "learning_rate": 0.00016035559419535716,
320
+ "loss": 0.6649,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.96,
325
+ "learning_rate": 0.00015877852522924732,
326
+ "loss": 0.6162,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.98,
331
+ "learning_rate": 0.00015717879602276122,
332
+ "loss": 0.6176,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 1.0,
337
+ "learning_rate": 0.00015555702330196023,
338
+ "loss": 0.252,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 1.02,
343
+ "learning_rate": 0.00015391383229110007,
344
+ "loss": 0.4463,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 1.04,
349
+ "learning_rate": 0.0001522498564715949,
350
+ "loss": 0.3958,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 1.05,
355
+ "learning_rate": 0.00015056573733779848,
356
+ "loss": 0.3796,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 1.07,
361
+ "learning_rate": 0.00014886212414969553,
362
+ "loss": 0.4192,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 1.09,
367
+ "learning_rate": 0.0001471396736825998,
368
+ "loss": 0.3784,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 1.11,
373
+ "learning_rate": 0.00014539904997395468,
374
+ "loss": 0.1074,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 1.13,
379
+ "learning_rate": 0.0001436409240673342,
380
+ "loss": 0.4203,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 1.15,
385
+ "learning_rate": 0.0001418659737537428,
386
+ "loss": 0.3724,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 1.16,
391
+ "learning_rate": 0.0001400748833103141,
392
+ "loss": 0.3961,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 1.18,
397
+ "learning_rate": 0.000138268343236509,
398
+ "loss": 0.3634,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 1.2,
403
+ "learning_rate": 0.000136447049987915,
404
+ "loss": 0.4205,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 1.22,
409
+ "learning_rate": 0.0001346117057077493,
410
+ "loss": 0.3778,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 1.24,
415
+ "learning_rate": 0.00013276301795616936,
416
+ "loss": 0.3271,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 1.25,
421
+ "learning_rate": 0.00013090169943749476,
422
+ "loss": 0.368,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 1.27,
427
+ "learning_rate": 0.00012902846772544624,
428
+ "loss": 0.3912,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 1.29,
433
+ "learning_rate": 0.00012714404498650743,
434
+ "loss": 0.3353,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 1.31,
439
+ "learning_rate": 0.0001252491577015158,
440
+ "loss": 0.3486,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 1.33,
445
+ "learning_rate": 0.00012334453638559057,
446
+ "loss": 0.4001,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 1.35,
451
+ "learning_rate": 0.00012143091530650508,
452
+ "loss": 0.338,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 1.36,
457
+ "learning_rate": 0.00011950903220161285,
458
+ "loss": 0.3944,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 1.38,
463
+ "learning_rate": 0.00011757962799343547,
464
+ "loss": 0.3361,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 1.4,
469
+ "learning_rate": 0.0001156434465040231,
470
+ "loss": 0.3868,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 1.42,
475
+ "learning_rate": 0.00011370123416819682,
476
+ "loss": 0.3375,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 1.44,
481
+ "learning_rate": 0.00011175373974578378,
482
+ "loss": 0.3797,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 1.45,
487
+ "learning_rate": 0.0001098017140329561,
488
+ "loss": 0.3836,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 1.47,
493
+ "learning_rate": 0.0001078459095727845,
494
+ "loss": 0.3387,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 1.49,
499
+ "learning_rate": 0.0001058870803651189,
500
+ "loss": 0.3692,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 1.51,
505
+ "learning_rate": 0.00010392598157590688,
506
+ "loss": 0.3511,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 1.53,
511
+ "learning_rate": 0.00010196336924606283,
512
+ "loss": 0.3645,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 1.55,
517
+ "learning_rate": 0.0001,
518
+ "loss": 0.3675,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 1.56,
523
+ "learning_rate": 9.803663075393718e-05,
524
+ "loss": 0.3701,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 1.58,
529
+ "learning_rate": 9.607401842409317e-05,
530
+ "loss": 0.3464,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 1.6,
535
+ "learning_rate": 9.411291963488109e-05,
536
+ "loss": 0.3673,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 1.62,
541
+ "learning_rate": 9.215409042721552e-05,
542
+ "loss": 0.3182,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 1.64,
547
+ "learning_rate": 9.019828596704394e-05,
548
+ "loss": 0.4204,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 1.65,
553
+ "learning_rate": 8.824626025421626e-05,
554
+ "loss": 0.3609,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 1.67,
559
+ "learning_rate": 8.629876583180321e-05,
560
+ "loss": 0.3071,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 1.69,
565
+ "learning_rate": 8.435655349597689e-05,
566
+ "loss": 0.3639,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 1.71,
571
+ "learning_rate": 8.242037200656455e-05,
572
+ "loss": 0.4159,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 1.73,
577
+ "learning_rate": 8.049096779838719e-05,
578
+ "loss": 0.344,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 1.75,
583
+ "learning_rate": 7.856908469349495e-05,
584
+ "loss": 0.3988,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 1.76,
589
+ "learning_rate": 7.66554636144095e-05,
590
+ "loss": 0.3804,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 1.78,
595
+ "learning_rate": 7.47508422984842e-05,
596
+ "loss": 0.3491,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 1.8,
601
+ "learning_rate": 7.285595501349258e-05,
602
+ "loss": 0.3185,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 1.82,
607
+ "learning_rate": 7.097153227455379e-05,
608
+ "loss": 0.3368,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 1.84,
613
+ "learning_rate": 6.909830056250527e-05,
614
+ "loss": 0.4159,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 1.85,
619
+ "learning_rate": 6.723698204383066e-05,
620
+ "loss": 0.1037,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 1.87,
625
+ "learning_rate": 6.538829429225069e-05,
626
+ "loss": 0.3056,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 1.89,
631
+ "learning_rate": 6.355295001208504e-05,
632
+ "loss": 0.3471,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 1.91,
637
+ "learning_rate": 6.173165676349103e-05,
638
+ "loss": 0.3285,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 1.93,
643
+ "learning_rate": 5.992511668968592e-05,
644
+ "loss": 0.3353,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 1.95,
649
+ "learning_rate": 5.8134026246257225e-05,
650
+ "loss": 0.323,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 1.96,
655
+ "learning_rate": 5.6359075932665775e-05,
656
+ "loss": 0.3711,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 1.98,
661
+ "learning_rate": 5.4600950026045326e-05,
662
+ "loss": 0.3837,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 2.0,
667
+ "learning_rate": 5.286032631740023e-05,
668
+ "loss": 0.1286,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 2.02,
673
+ "learning_rate": 5.113787585030454e-05,
674
+ "loss": 0.2039,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 2.04,
679
+ "learning_rate": 4.943426266220156e-05,
680
+ "loss": 0.1764,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 2.05,
685
+ "learning_rate": 4.7750143528405126e-05,
686
+ "loss": 0.232,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 2.07,
691
+ "learning_rate": 4.6086167708899975e-05,
692
+ "loss": 0.2015,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 2.09,
697
+ "learning_rate": 4.444297669803981e-05,
698
+ "loss": 0.1638,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 2.11,
703
+ "learning_rate": 4.282120397723879e-05,
704
+ "loss": 0.1782,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 2.13,
709
+ "learning_rate": 4.12214747707527e-05,
710
+ "loss": 0.1994,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 2.15,
715
+ "learning_rate": 3.964440580464286e-05,
716
+ "loss": 0.0777,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 2.16,
721
+ "learning_rate": 3.8090605069016595e-05,
722
+ "loss": 0.2262,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 2.18,
727
+ "learning_rate": 3.6560671583635467e-05,
728
+ "loss": 0.2092,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 2.2,
733
+ "learning_rate": 3.5055195166981645e-05,
734
+ "loss": 0.1873,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 2.22,
739
+ "learning_rate": 3.357475620887186e-05,
740
+ "loss": 0.1743,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 2.24,
745
+ "learning_rate": 3.211992544670582e-05,
746
+ "loss": 0.0757,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 2.25,
751
+ "learning_rate": 3.069126374543643e-05,
752
+ "loss": 0.1746,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 2.27,
757
+ "learning_rate": 2.9289321881345254e-05,
758
+ "loss": 0.1928,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 2.29,
763
+ "learning_rate": 2.7914640329708118e-05,
764
+ "loss": 0.1704,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 2.31,
769
+ "learning_rate": 2.6567749056431467e-05,
770
+ "loss": 0.1621,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 2.33,
775
+ "learning_rate": 2.5249167313740308e-05,
776
+ "loss": 0.1666,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 2.35,
781
+ "learning_rate": 2.3959403439996907e-05,
782
+ "loss": 0.1965,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 2.36,
787
+ "learning_rate": 2.26989546637263e-05,
788
+ "loss": 0.2116,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 2.38,
793
+ "learning_rate": 2.146830691192553e-05,
794
+ "loss": 0.1428,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 2.4,
799
+ "learning_rate": 2.02679346227293e-05,
800
+ "loss": 0.1969,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 2.42,
805
+ "learning_rate": 1.9098300562505266e-05,
806
+ "loss": 0.1912,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 2.44,
811
+ "learning_rate": 1.795985564744864e-05,
812
+ "loss": 0.1869,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 2.45,
817
+ "learning_rate": 1.6853038769745467e-05,
818
+ "loss": 0.1589,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 2.47,
823
+ "learning_rate": 1.5778276628371357e-05,
824
+ "loss": 0.1504,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 2.49,
829
+ "learning_rate": 1.4735983564590783e-05,
830
+ "loss": 0.1817,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 2.51,
835
+ "learning_rate": 1.3726561402220817e-05,
836
+ "loss": 0.1935,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 2.53,
841
+ "learning_rate": 1.2750399292720283e-05,
842
+ "loss": 0.1756,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 2.55,
847
+ "learning_rate": 1.1807873565164506e-05,
848
+ "loss": 0.1584,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 2.56,
853
+ "learning_rate": 1.0899347581163221e-05,
854
+ "loss": 0.1821,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 2.58,
859
+ "learning_rate": 1.0025171594777871e-05,
860
+ "loss": 0.2201,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 2.6,
865
+ "learning_rate": 9.185682617491863e-06,
866
+ "loss": 0.1844,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 2.62,
871
+ "learning_rate": 8.381204288286415e-06,
872
+ "loss": 0.1498,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 2.64,
877
+ "learning_rate": 7.612046748871327e-06,
878
+ "loss": 0.189,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 2.65,
883
+ "learning_rate": 6.878506524119643e-06,
884
+ "loss": 0.1518,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 2.67,
889
+ "learning_rate": 6.180866407751595e-06,
890
+ "loss": 0.1542,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 2.69,
895
+ "learning_rate": 5.519395353312196e-06,
896
+ "loss": 0.168,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 2.71,
901
+ "learning_rate": 4.8943483704846475e-06,
902
+ "loss": 0.1886,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 2.73,
907
+ "learning_rate": 4.305966426779118e-06,
908
+ "loss": 0.1844,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 2.75,
913
+ "learning_rate": 3.7544763546352834e-06,
914
+ "loss": 0.1995,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 2.76,
919
+ "learning_rate": 3.240090763974024e-06,
920
+ "loss": 0.1679,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 2.78,
925
+ "learning_rate": 2.7630079602323442e-06,
926
+ "loss": 0.176,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 2.8,
931
+ "learning_rate": 2.3234118679127615e-06,
932
+ "loss": 0.1808,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 2.82,
937
+ "learning_rate": 1.921471959676957e-06,
938
+ "loss": 0.1669,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 2.84,
943
+ "learning_rate": 1.5573431910108405e-06,
944
+ "loss": 0.1934,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 2.85,
949
+ "learning_rate": 1.231165940486234e-06,
950
+ "loss": 0.1536,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 2.87,
955
+ "learning_rate": 9.43065955642275e-07,
956
+ "loss": 0.1367,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 2.89,
961
+ "learning_rate": 6.931543045073708e-07,
962
+ "loss": 0.1517,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 2.91,
967
+ "learning_rate": 4.815273327803182e-07,
968
+ "loss": 0.1471,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 2.93,
973
+ "learning_rate": 3.0826662668720364e-07,
974
+ "loss": 0.1823,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 2.95,
979
+ "learning_rate": 1.7343898152841765e-07,
980
+ "loss": 0.1613,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 2.96,
985
+ "learning_rate": 7.709637592770991e-08,
986
+ "loss": 0.1318,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 2.98,
991
+ "learning_rate": 1.9275951793518154e-08,
992
+ "loss": 0.1763,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 3.0,
997
+ "learning_rate": 0.0,
998
+ "loss": 0.0875,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 3.0,
1003
+ "step": 165,
1004
+ "total_flos": 303952207151104.0,
1005
+ "train_loss": 0.36774244087212016,
1006
+ "train_runtime": 8148.5593,
1007
+ "train_samples_per_second": 2.577,
1008
+ "train_steps_per_second": 0.02
1009
+ }
1010
+ ],
1011
+ "logging_steps": 1.0,
1012
+ "max_steps": 165,
1013
+ "num_input_tokens_seen": 0,
1014
+ "num_train_epochs": 3,
1015
+ "save_steps": 50000,
1016
+ "total_flos": 303952207151104.0,
1017
+ "train_batch_size": 16,
1018
+ "trial_name": null,
1019
+ "trial_params": null
1020
+ }