Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +495 -0
- config.json +27 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:523982
|
8 |
+
- loss:MSELoss
|
9 |
+
base_model: FacebookAI/xlm-roberta-base
|
10 |
+
widget:
|
11 |
+
- source_sentence: It's mined by armed gangs using slaves, child slaves, what the
|
12 |
+
U.N. Security Council calls "blood minerals," then traveled into some components
|
13 |
+
and ended up in a factory in Shinjin in China.
|
14 |
+
sentences:
|
15 |
+
- Тобі не можна входити.
|
16 |
+
- Не важливо.
|
17 |
+
- Цим рудником керують озброєні банди, використовуючи рабську працю дітей. Добуті
|
18 |
+
ними копалини Рада Безпеки ООН називає "кривавими мінералами". Вони пройшли ще
|
19 |
+
кілька стадій, з яких завершальною була фабрика у Шеньчжені, Китай.
|
20 |
+
- source_sentence: It's not my fault!
|
21 |
+
sentences:
|
22 |
+
- Це не моя провина.
|
23 |
+
- Ось ваша здача.
|
24 |
+
- Нам завжди хотілося зробити великий театральний тур.
|
25 |
+
- source_sentence: Rye was called the grain of poverty.
|
26 |
+
sentences:
|
27 |
+
- Лише за п’ять-десять років технологія досягне необхідного рівня.
|
28 |
+
- Жито називали зерном злидарів.
|
29 |
+
- Я захрипла.
|
30 |
+
- source_sentence: You look very tired.
|
31 |
+
sentences:
|
32 |
+
- Ти виглядаєш дуже втомленою.
|
33 |
+
- Я не знаю, що сказати, щоб вам стало краще.
|
34 |
+
- Обидва вони були на користь примирення з Німеччиною і обмеження репарацій.
|
35 |
+
- source_sentence: You'd better consult the doctor.
|
36 |
+
sentences:
|
37 |
+
- Краще проконсультуйся у лікаря.
|
38 |
+
- Використання військ США слід розглядати тільки як останній засіб.
|
39 |
+
- Їх позначають як Aufklärungsfahrzeug 93 та Aufklärungsfahrzeug 97 відповідно.
|
40 |
+
pipeline_tag: sentence-similarity
|
41 |
+
library_name: sentence-transformers
|
42 |
+
metrics:
|
43 |
+
- negative_mse
|
44 |
+
- pearson_cosine
|
45 |
+
- spearman_cosine
|
46 |
+
model-index:
|
47 |
+
- name: SentenceTransformer based on FacebookAI/xlm-roberta-base
|
48 |
+
results:
|
49 |
+
- task:
|
50 |
+
type: knowledge-distillation
|
51 |
+
name: Knowledge Distillation
|
52 |
+
dataset:
|
53 |
+
name: mse en ua
|
54 |
+
type: mse-en-ua
|
55 |
+
metrics:
|
56 |
+
- type: negative_mse
|
57 |
+
value: -1.1089269071817398
|
58 |
+
name: Negative Mse
|
59 |
+
- task:
|
60 |
+
type: semantic-similarity
|
61 |
+
name: Semantic Similarity
|
62 |
+
dataset:
|
63 |
+
name: sts17 en en
|
64 |
+
type: sts17-en-en
|
65 |
+
metrics:
|
66 |
+
- type: pearson_cosine
|
67 |
+
value: 0.6784819487397877
|
68 |
+
name: Pearson Cosine
|
69 |
+
- type: spearman_cosine
|
70 |
+
value: 0.7308493185913256
|
71 |
+
name: Spearman Cosine
|
72 |
+
- task:
|
73 |
+
type: semantic-similarity
|
74 |
+
name: Semantic Similarity
|
75 |
+
dataset:
|
76 |
+
name: sts17 en ua
|
77 |
+
type: sts17-en-ua
|
78 |
+
metrics:
|
79 |
+
- type: pearson_cosine
|
80 |
+
value: 0.592555339963418
|
81 |
+
name: Pearson Cosine
|
82 |
+
- type: spearman_cosine
|
83 |
+
value: 0.6197606373137193
|
84 |
+
name: Spearman Cosine
|
85 |
+
- task:
|
86 |
+
type: semantic-similarity
|
87 |
+
name: Semantic Similarity
|
88 |
+
dataset:
|
89 |
+
name: sts17 ua ua
|
90 |
+
type: sts17-ua-ua
|
91 |
+
metrics:
|
92 |
+
- type: pearson_cosine
|
93 |
+
value: 0.6158998595292998
|
94 |
+
name: Pearson Cosine
|
95 |
+
- type: spearman_cosine
|
96 |
+
value: 0.6445750755380512
|
97 |
+
name: Spearman Cosine
|
98 |
+
---
|
99 |
+
|
100 |
+
# SentenceTransformer based on FacebookAI/xlm-roberta-base
|
101 |
+
|
102 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
103 |
+
|
104 |
+
## Model Details
|
105 |
+
|
106 |
+
### Model Description
|
107 |
+
- **Model Type:** Sentence Transformer
|
108 |
+
- **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
|
109 |
+
- **Maximum Sequence Length:** 512 tokens
|
110 |
+
- **Output Dimensionality:** 768 dimensions
|
111 |
+
- **Similarity Function:** Cosine Similarity
|
112 |
+
<!-- - **Training Dataset:** Unknown -->
|
113 |
+
<!-- - **Language:** Unknown -->
|
114 |
+
<!-- - **License:** Unknown -->
|
115 |
+
|
116 |
+
### Model Sources
|
117 |
+
|
118 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
119 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
120 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
121 |
+
|
122 |
+
### Full Model Architecture
|
123 |
+
|
124 |
+
```
|
125 |
+
SentenceTransformer(
|
126 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
127 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
128 |
+
)
|
129 |
+
```
|
130 |
+
|
131 |
+
## Usage
|
132 |
+
|
133 |
+
### Direct Usage (Sentence Transformers)
|
134 |
+
|
135 |
+
First install the Sentence Transformers library:
|
136 |
+
|
137 |
+
```bash
|
138 |
+
pip install -U sentence-transformers
|
139 |
+
```
|
140 |
+
|
141 |
+
Then you can load this model and run inference.
|
142 |
+
```python
|
143 |
+
from sentence_transformers import SentenceTransformer
|
144 |
+
|
145 |
+
# Download from the 🤗 Hub
|
146 |
+
model = SentenceTransformer("panalexeu/xlm-roberta-ua-distilled-full")
|
147 |
+
# Run inference
|
148 |
+
sentences = [
|
149 |
+
"You'd better consult the doctor.",
|
150 |
+
'Краще проконсультуйся у лікаря.',
|
151 |
+
'Їх позначають як Aufklärungsfahrzeug 93 та Aufklärungsfahrzeug 97 відповідно.',
|
152 |
+
]
|
153 |
+
embeddings = model.encode(sentences)
|
154 |
+
print(embeddings.shape)
|
155 |
+
# [3, 768]
|
156 |
+
|
157 |
+
# Get the similarity scores for the embeddings
|
158 |
+
similarities = model.similarity(embeddings, embeddings)
|
159 |
+
print(similarities.shape)
|
160 |
+
# [3, 3]
|
161 |
+
```
|
162 |
+
|
163 |
+
<!--
|
164 |
+
### Direct Usage (Transformers)
|
165 |
+
|
166 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
167 |
+
|
168 |
+
</details>
|
169 |
+
-->
|
170 |
+
|
171 |
+
<!--
|
172 |
+
### Downstream Usage (Sentence Transformers)
|
173 |
+
|
174 |
+
You can finetune this model on your own dataset.
|
175 |
+
|
176 |
+
<details><summary>Click to expand</summary>
|
177 |
+
|
178 |
+
</details>
|
179 |
+
-->
|
180 |
+
|
181 |
+
<!--
|
182 |
+
### Out-of-Scope Use
|
183 |
+
|
184 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
185 |
+
-->
|
186 |
+
|
187 |
+
## Evaluation
|
188 |
+
|
189 |
+
### Metrics
|
190 |
+
|
191 |
+
#### Knowledge Distillation
|
192 |
+
|
193 |
+
* Dataset: `mse-en-ua`
|
194 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
195 |
+
|
196 |
+
| Metric | Value |
|
197 |
+
|:-----------------|:------------|
|
198 |
+
| **negative_mse** | **-1.1089** |
|
199 |
+
|
200 |
+
#### Semantic Similarity
|
201 |
+
|
202 |
+
* Datasets: `sts17-en-en`, `sts17-en-ua` and `sts17-ua-ua`
|
203 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
204 |
+
|
205 |
+
| Metric | sts17-en-en | sts17-en-ua | sts17-ua-ua |
|
206 |
+
|:--------------------|:------------|:------------|:------------|
|
207 |
+
| pearson_cosine | 0.6785 | 0.5926 | 0.6159 |
|
208 |
+
| **spearman_cosine** | **0.7308** | **0.6198** | **0.6446** |
|
209 |
+
|
210 |
+
<!--
|
211 |
+
## Bias, Risks and Limitations
|
212 |
+
|
213 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
214 |
+
-->
|
215 |
+
|
216 |
+
<!--
|
217 |
+
### Recommendations
|
218 |
+
|
219 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
220 |
+
-->
|
221 |
+
|
222 |
+
## Training Details
|
223 |
+
|
224 |
+
### Training Dataset
|
225 |
+
|
226 |
+
#### Unnamed Dataset
|
227 |
+
|
228 |
+
* Size: 523,982 training samples
|
229 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
230 |
+
* Approximate statistics based on the first 1000 samples:
|
231 |
+
| | english | non_english | label |
|
232 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
233 |
+
| type | string | string | list |
|
234 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 21.11 tokens</li><li>max: 254 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 23.15 tokens</li><li>max: 293 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
235 |
+
* Samples:
|
236 |
+
| english | non_english | label |
|
237 |
+
|:----------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|
|
238 |
+
| <code>Her real name is Lydia (リディア, Ridia), but she was mistaken for a boy and called Ricard.</code> | <code>Справжнє ім'я — Лідія, але її помилково сприйняли за хлопчика і назвали Рікард.</code> | <code>[0.15217968821525574, -0.17830222845077515, -0.12677159905433655, 0.22082313895225525, 0.40085524320602417, ...]</code> |
|
239 |
+
| <code>(Applause) So he didn't just learn water.</code> | <code>(Аплодисменти) Він не тільки вивчив слово "вода".</code> | <code>[-0.1058148592710495, -0.08846072107553482, -0.2684604823589325, -0.105219267308712, 0.3050258755683899, ...]</code> |
|
240 |
+
| <code>It is tightly integrated with SAM, the Storage and Archive Manager, and hence is often referred to as SAM-QFS.</code> | <code>Вона тісно інтегрована з SAM (Storage and Archive Manager), тому часто називається SAM-QFS.</code> | <code>[0.03270340710878372, -0.45798248052597046, -0.20090211927890778, 0.006579531356692314, -0.03178019821643829, ...]</code> |
|
241 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
242 |
+
|
243 |
+
### Evaluation Dataset
|
244 |
+
|
245 |
+
#### Unnamed Dataset
|
246 |
+
|
247 |
+
* Size: 3,838 evaluation samples
|
248 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
249 |
+
* Approximate statistics based on the first 1000 samples:
|
250 |
+
| | english | non_english | label |
|
251 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
252 |
+
| type | string | string | list |
|
253 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 15.64 tokens</li><li>max: 143 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.98 tokens</li><li>max: 148 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
254 |
+
* Samples:
|
255 |
+
| english | non_english | label |
|
256 |
+
|:---------------------------------------------------------|:-----------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|
|
257 |
+
| <code>I have lost my wallet.</code> | <code>Я загубив гаманець.</code> | <code>[-0.11186987161636353, -0.03419225662946701, -0.31304317712783813, 0.0838347002863884, 0.108644500374794, ...]</code> |
|
258 |
+
| <code>It's a pharmaceutical product.</code> | <code>Це фармацевтичний продукт.</code> | <code>[0.04133488982915878, -0.4182000756263733, -0.30786487460136414, -0.09351564198732376, -0.023946482688188553, ...]</code> |
|
259 |
+
| <code>We've all heard of the Casual Friday thing.</code> | <code>Всі ми чули про «джинсову п’ятницю» (вільна форма одягу).</code> | <code>[-0.10697802156209946, 0.21002227067947388, -0.2513434886932373, -0.3718843460083008, 0.06871984899044037, ...]</code> |
|
260 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
261 |
+
|
262 |
+
### Training Hyperparameters
|
263 |
+
#### Non-Default Hyperparameters
|
264 |
+
|
265 |
+
- `eval_strategy`: steps
|
266 |
+
- `per_device_train_batch_size`: 16
|
267 |
+
- `per_device_eval_batch_size`: 16
|
268 |
+
- `gradient_accumulation_steps`: 3
|
269 |
+
- `num_train_epochs`: 4
|
270 |
+
- `warmup_ratio`: 0.1
|
271 |
+
|
272 |
+
#### All Hyperparameters
|
273 |
+
<details><summary>Click to expand</summary>
|
274 |
+
|
275 |
+
- `overwrite_output_dir`: False
|
276 |
+
- `do_predict`: False
|
277 |
+
- `eval_strategy`: steps
|
278 |
+
- `prediction_loss_only`: True
|
279 |
+
- `per_device_train_batch_size`: 16
|
280 |
+
- `per_device_eval_batch_size`: 16
|
281 |
+
- `per_gpu_train_batch_size`: None
|
282 |
+
- `per_gpu_eval_batch_size`: None
|
283 |
+
- `gradient_accumulation_steps`: 3
|
284 |
+
- `eval_accumulation_steps`: None
|
285 |
+
- `torch_empty_cache_steps`: None
|
286 |
+
- `learning_rate`: 5e-05
|
287 |
+
- `weight_decay`: 0.0
|
288 |
+
- `adam_beta1`: 0.9
|
289 |
+
- `adam_beta2`: 0.999
|
290 |
+
- `adam_epsilon`: 1e-08
|
291 |
+
- `max_grad_norm`: 1.0
|
292 |
+
- `num_train_epochs`: 4
|
293 |
+
- `max_steps`: -1
|
294 |
+
- `lr_scheduler_type`: linear
|
295 |
+
- `lr_scheduler_kwargs`: {}
|
296 |
+
- `warmup_ratio`: 0.1
|
297 |
+
- `warmup_steps`: 0
|
298 |
+
- `log_level`: passive
|
299 |
+
- `log_level_replica`: warning
|
300 |
+
- `log_on_each_node`: True
|
301 |
+
- `logging_nan_inf_filter`: True
|
302 |
+
- `save_safetensors`: True
|
303 |
+
- `save_on_each_node`: False
|
304 |
+
- `save_only_model`: False
|
305 |
+
- `restore_callback_states_from_checkpoint`: False
|
306 |
+
- `no_cuda`: False
|
307 |
+
- `use_cpu`: False
|
308 |
+
- `use_mps_device`: False
|
309 |
+
- `seed`: 42
|
310 |
+
- `data_seed`: None
|
311 |
+
- `jit_mode_eval`: False
|
312 |
+
- `use_ipex`: False
|
313 |
+
- `bf16`: False
|
314 |
+
- `fp16`: False
|
315 |
+
- `fp16_opt_level`: O1
|
316 |
+
- `half_precision_backend`: auto
|
317 |
+
- `bf16_full_eval`: False
|
318 |
+
- `fp16_full_eval`: False
|
319 |
+
- `tf32`: None
|
320 |
+
- `local_rank`: 0
|
321 |
+
- `ddp_backend`: None
|
322 |
+
- `tpu_num_cores`: None
|
323 |
+
- `tpu_metrics_debug`: False
|
324 |
+
- `debug`: []
|
325 |
+
- `dataloader_drop_last`: False
|
326 |
+
- `dataloader_num_workers`: 0
|
327 |
+
- `dataloader_prefetch_factor`: None
|
328 |
+
- `past_index`: -1
|
329 |
+
- `disable_tqdm`: False
|
330 |
+
- `remove_unused_columns`: True
|
331 |
+
- `label_names`: None
|
332 |
+
- `load_best_model_at_end`: False
|
333 |
+
- `ignore_data_skip`: False
|
334 |
+
- `fsdp`: []
|
335 |
+
- `fsdp_min_num_params`: 0
|
336 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
337 |
+
- `tp_size`: 0
|
338 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
339 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
340 |
+
- `deepspeed`: None
|
341 |
+
- `label_smoothing_factor`: 0.0
|
342 |
+
- `optim`: adamw_torch
|
343 |
+
- `optim_args`: None
|
344 |
+
- `adafactor`: False
|
345 |
+
- `group_by_length`: False
|
346 |
+
- `length_column_name`: length
|
347 |
+
- `ddp_find_unused_parameters`: None
|
348 |
+
- `ddp_bucket_cap_mb`: None
|
349 |
+
- `ddp_broadcast_buffers`: False
|
350 |
+
- `dataloader_pin_memory`: True
|
351 |
+
- `dataloader_persistent_workers`: False
|
352 |
+
- `skip_memory_metrics`: True
|
353 |
+
- `use_legacy_prediction_loop`: False
|
354 |
+
- `push_to_hub`: False
|
355 |
+
- `resume_from_checkpoint`: None
|
356 |
+
- `hub_model_id`: None
|
357 |
+
- `hub_strategy`: every_save
|
358 |
+
- `hub_private_repo`: None
|
359 |
+
- `hub_always_push`: False
|
360 |
+
- `gradient_checkpointing`: False
|
361 |
+
- `gradient_checkpointing_kwargs`: None
|
362 |
+
- `include_inputs_for_metrics`: False
|
363 |
+
- `include_for_metrics`: []
|
364 |
+
- `eval_do_concat_batches`: True
|
365 |
+
- `fp16_backend`: auto
|
366 |
+
- `push_to_hub_model_id`: None
|
367 |
+
- `push_to_hub_organization`: None
|
368 |
+
- `mp_parameters`:
|
369 |
+
- `auto_find_batch_size`: False
|
370 |
+
- `full_determinism`: False
|
371 |
+
- `torchdynamo`: None
|
372 |
+
- `ray_scope`: last
|
373 |
+
- `ddp_timeout`: 1800
|
374 |
+
- `torch_compile`: False
|
375 |
+
- `torch_compile_backend`: None
|
376 |
+
- `torch_compile_mode`: None
|
377 |
+
- `include_tokens_per_second`: False
|
378 |
+
- `include_num_input_tokens_seen`: False
|
379 |
+
- `neftune_noise_alpha`: None
|
380 |
+
- `optim_target_modules`: None
|
381 |
+
- `batch_eval_metrics`: False
|
382 |
+
- `eval_on_start`: False
|
383 |
+
- `use_liger_kernel`: False
|
384 |
+
- `eval_use_gather_object`: False
|
385 |
+
- `average_tokens_across_devices`: False
|
386 |
+
- `prompts`: None
|
387 |
+
- `batch_sampler`: batch_sampler
|
388 |
+
- `multi_dataset_batch_sampler`: proportional
|
389 |
+
|
390 |
+
</details>
|
391 |
+
|
392 |
+
### Training Logs
|
393 |
+
| Epoch | Step | Training Loss | Validation Loss | mse-en-ua_negative_mse | sts17-en-en_spearman_cosine | sts17-en-ua_spearman_cosine | sts17-ua-ua_spearman_cosine |
|
394 |
+
|:------:|:-----:|:-------------:|:---------------:|:----------------------:|:---------------------------:|:---------------------------:|:---------------------------:|
|
395 |
+
| 0.0938 | 1024 | 0.3281 | 0.0297 | -2.9592 | 0.2325 | 0.1547 | 0.2265 |
|
396 |
+
| 0.1876 | 2048 | 0.1136 | 0.2042 | -21.6693 | 0.0553 | 0.0429 | 0.2442 |
|
397 |
+
| 0.2814 | 3072 | 0.1008 | 0.0273 | -2.7461 | 0.2666 | 0.0758 | 0.2613 |
|
398 |
+
| 0.3752 | 4096 | 0.0843 | 0.0243 | -2.4623 | 0.2541 | 0.0012 | 0.3680 |
|
399 |
+
| 0.4690 | 5120 | 0.0756 | 0.0216 | -2.2095 | 0.3933 | 0.2535 | 0.4342 |
|
400 |
+
| 0.5628 | 6144 | 0.0661 | 0.0187 | -1.9539 | 0.5739 | 0.4222 | 0.5056 |
|
401 |
+
| 0.6566 | 7168 | 0.0579 | 0.0164 | -1.7513 | 0.6184 | 0.4897 | 0.5826 |
|
402 |
+
| 0.7504 | 8192 | 0.0526 | 0.0153 | -1.6546 | 0.6219 | 0.4568 | 0.5842 |
|
403 |
+
| 0.8442 | 9216 | 0.0488 | 0.0142 | -1.5525 | 0.6160 | 0.5012 | 0.5884 |
|
404 |
+
| 0.9380 | 10240 | 0.046 | 0.0135 | -1.4957 | 0.6361 | 0.5046 | 0.5969 |
|
405 |
+
| 1.0318 | 11264 | 0.0437 | 0.0130 | -1.4506 | 0.6453 | 0.5093 | 0.5939 |
|
406 |
+
| 1.1256 | 12288 | 0.0419 | 0.0125 | -1.4049 | 0.6403 | 0.5054 | 0.6020 |
|
407 |
+
| 1.2194 | 13312 | 0.0404 | 0.0122 | -1.3794 | 0.6654 | 0.5442 | 0.6182 |
|
408 |
+
| 1.3132 | 14336 | 0.0394 | 0.0118 | -1.3434 | 0.6800 | 0.5790 | 0.6291 |
|
409 |
+
| 1.4070 | 15360 | 0.0383 | 0.0115 | -1.3184 | 0.6836 | 0.5805 | 0.6301 |
|
410 |
+
| 1.5008 | 16384 | 0.0375 | 0.0114 | -1.3067 | 0.6742 | 0.5555 | 0.6055 |
|
411 |
+
| 1.5946 | 17408 | 0.0368 | 0.0111 | -1.2864 | 0.6909 | 0.5765 | 0.6256 |
|
412 |
+
| 1.6884 | 18432 | 0.036 | 0.0109 | -1.2633 | 0.6875 | 0.5801 | 0.6178 |
|
413 |
+
| 1.7822 | 19456 | 0.0353 | 0.0107 | -1.2490 | 0.7060 | 0.5959 | 0.6322 |
|
414 |
+
| 1.8760 | 20480 | 0.035 | 0.0106 | -1.2357 | 0.7127 | 0.6047 | 0.6389 |
|
415 |
+
| 1.9698 | 21504 | 0.0344 | 0.0105 | -1.2265 | 0.7265 | 0.6233 | 0.6459 |
|
416 |
+
| 2.0636 | 22528 | 0.0335 | 0.0103 | -1.2108 | 0.7184 | 0.6151 | 0.6438 |
|
417 |
+
| 2.1574 | 23552 | 0.0327 | 0.0103 | -1.2101 | 0.7122 | 0.6074 | 0.6427 |
|
418 |
+
| 2.2512 | 24576 | 0.0324 | 0.0102 | -1.1972 | 0.7232 | 0.6174 | 0.6447 |
|
419 |
+
| 2.3450 | 25600 | 0.0322 | 0.0100 | -1.1813 | 0.7217 | 0.6166 | 0.6457 |
|
420 |
+
| 2.4388 | 26624 | 0.032 | 0.0099 | -1.1745 | 0.7308 | 0.6272 | 0.6534 |
|
421 |
+
| 2.5326 | 27648 | 0.0316 | 0.0098 | -1.1673 | 0.7289 | 0.6125 | 0.6441 |
|
422 |
+
| 2.6264 | 28672 | 0.0314 | 0.0098 | -1.1622 | 0.7222 | 0.6105 | 0.6365 |
|
423 |
+
| 2.7202 | 29696 | 0.0312 | 0.0097 | -1.1593 | 0.7175 | 0.6121 | 0.6348 |
|
424 |
+
| 2.8140 | 30720 | 0.0308 | 0.0096 | -1.1457 | 0.7204 | 0.6044 | 0.6377 |
|
425 |
+
| 2.9078 | 31744 | 0.0307 | 0.0095 | -1.1411 | 0.7230 | 0.6175 | 0.6353 |
|
426 |
+
| 3.0016 | 32768 | 0.0305 | 0.0095 | -1.1414 | 0.7130 | 0.6052 | 0.6340 |
|
427 |
+
| 3.0954 | 33792 | 0.0296 | 0.0095 | -1.1360 | 0.7234 | 0.6160 | 0.6411 |
|
428 |
+
| 3.1892 | 34816 | 0.0295 | 0.0094 | -1.1317 | 0.7220 | 0.6131 | 0.6396 |
|
429 |
+
| 3.2830 | 35840 | 0.0294 | 0.0094 | -1.1306 | 0.7315 | 0.6167 | 0.6505 |
|
430 |
+
| 3.3768 | 36864 | 0.0293 | 0.0094 | -1.1263 | 0.7219 | 0.6089 | 0.6450 |
|
431 |
+
| 3.4706 | 37888 | 0.0292 | 0.0093 | -1.1225 | 0.7236 | 0.6141 | 0.6451 |
|
432 |
+
| 3.5644 | 38912 | 0.0291 | 0.0093 | -1.1204 | 0.7331 | 0.6179 | 0.6460 |
|
433 |
+
| 3.6582 | 39936 | 0.029 | 0.0092 | -1.1147 | 0.7226 | 0.6127 | 0.6406 |
|
434 |
+
| 3.7520 | 40960 | 0.029 | 0.0092 | -1.1118 | 0.7245 | 0.6184 | 0.6425 |
|
435 |
+
| 3.8458 | 41984 | 0.0289 | 0.0092 | -1.1102 | 0.7279 | 0.6179 | 0.6465 |
|
436 |
+
| 3.9396 | 43008 | 0.0288 | 0.0092 | -1.1099 | 0.7298 | 0.6191 | 0.6438 |
|
437 |
+
| 3.9997 | 43664 | - | 0.0092 | -1.1089 | 0.7308 | 0.6198 | 0.6446 |
|
438 |
+
|
439 |
+
|
440 |
+
### Framework Versions
|
441 |
+
- Python: 3.11.11
|
442 |
+
- Sentence Transformers: 3.4.1
|
443 |
+
- Transformers: 4.51.1
|
444 |
+
- PyTorch: 2.5.1+cu124
|
445 |
+
- Accelerate: 1.3.0
|
446 |
+
- Datasets: 3.5.0
|
447 |
+
- Tokenizers: 0.21.0
|
448 |
+
|
449 |
+
## Citation
|
450 |
+
|
451 |
+
### BibTeX
|
452 |
+
|
453 |
+
#### Sentence Transformers
|
454 |
+
```bibtex
|
455 |
+
@inproceedings{reimers-2019-sentence-bert,
|
456 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
457 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
458 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
459 |
+
month = "11",
|
460 |
+
year = "2019",
|
461 |
+
publisher = "Association for Computational Linguistics",
|
462 |
+
url = "https://arxiv.org/abs/1908.10084",
|
463 |
+
}
|
464 |
+
```
|
465 |
+
|
466 |
+
#### MSELoss
|
467 |
+
```bibtex
|
468 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
469 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
470 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
471 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
472 |
+
month = "11",
|
473 |
+
year = "2020",
|
474 |
+
publisher = "Association for Computational Linguistics",
|
475 |
+
url = "https://arxiv.org/abs/2004.09813",
|
476 |
+
}
|
477 |
+
```
|
478 |
+
|
479 |
+
<!--
|
480 |
+
## Glossary
|
481 |
+
|
482 |
+
*Clearly define terms in order to be accessible across audiences.*
|
483 |
+
-->
|
484 |
+
|
485 |
+
<!--
|
486 |
+
## Model Card Authors
|
487 |
+
|
488 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
489 |
+
-->
|
490 |
+
|
491 |
+
<!--
|
492 |
+
## Model Card Contact
|
493 |
+
|
494 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
495 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"XLMRobertaModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "xlm-roberta",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"output_past": true,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.51.1",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 250002
|
27 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.51.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4ab22ee3eb48cdca950cbdc55c68fc48f191970d587faaaebf68940712e1711
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_token": "<pad>",
|
52 |
+
"sep_token": "</s>",
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|