Papers
arxiv:2006.13979

Unsupervised Cross-lingual Representation Learning for Speech Recognition

Published on Jun 24, 2020
Authors:
,
,
,
,

Abstract

This paper presents XLSR which learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages. We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations and jointly learns a quantization of the latents shared across languages. The resulting model is fine-tuned on labeled data and experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme error rate reduction of 72% compared to the best known results. On BABEL, our approach improves word error rate by 16% relative compared to a comparable system. Our approach enables a single multilingual speech recognition model which is competitive to strong individual models. Analysis shows that the latent discrete speech representations are shared across languages with increased sharing for related languages. We hope to catalyze research in low-resource speech understanding by releasing XLSR-53, a large model pretrained in 53 languages.

Community

Sign up or log in to comment

Models citing this paper 10

Browse 10 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2006.13979 in a dataset README.md to link it from this page.

Spaces citing this paper 8

Collections including this paper 1