Papers
arxiv:2209.01551

Learning to Deceive in Multi-Agent Hidden Role Games

Published on Sep 4, 2022
Authors:
,
,

Abstract

A new mixed competitive-cooperative multi-agent reinforcement learning environment inspired by deception games is introduced, along with a Bayesian belief manipulation model that enhances deception and performance.

AI-generated summary

Deception is prevalent in human social settings. However, studies into the effect of deception on reinforcement learning algorithms have been limited to simplistic settings, restricting their applicability to complex real-world problems. This paper addresses this by introducing a new mixed competitive-cooperative multi-agent reinforcement learning (MARL) environment inspired by popular role-based deception games such as Werewolf, Avalon, and Among Us. The environment's unique challenge lies in the necessity to cooperate with other agents despite not knowing if they are friend or foe. Furthermore, we introduce a model of deception, which we call Bayesian belief manipulation (BBM) and demonstrate its effectiveness at deceiving other agents in this environment while also increasing the deceiving agent's performance.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2209.01551 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2209.01551 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2209.01551 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.