Papers
arxiv:2305.14312

Text-guided 3D Human Generation from 2D Collections

Published on May 23, 2023
Authors:
,
,
,
,

Abstract

A cross-modal attention-based model generates 3D humans from textual fashion descriptions, achieving high efficiency and fine-grained consistency.

AI-generated summary

3D human modeling has been widely used for engaging interaction in gaming, film, and animation. The customization of these characters is crucial for creativity and scalability, which highlights the importance of controllability. In this work, we introduce Text-guided 3D Human Generation (T3H), where a model is to generate a 3D human, guided by the fashion description. There are two goals: 1) the 3D human should render articulately, and 2) its outfit is controlled by the given text. To address this T3H task, we propose Compositional Cross-modal Human (CCH). CCH adopts cross-modal attention to fuse compositional human rendering with the extracted fashion semantics. Each human body part perceives relevant textual guidance as its visual patterns. We incorporate the human prior and semantic discrimination to enhance 3D geometry transformation and fine-grained consistency, enabling it to learn from 2D collections for data efficiency. We conduct evaluations on DeepFashion and SHHQ with diverse fashion attributes covering the shape, fabric, and color of upper and lower clothing. Extensive experiments demonstrate that CCH achieves superior results for T3H with high efficiency.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2305.14312 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2305.14312 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2305.14312 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.