Papers
arxiv:2307.02394

Won't Get Fooled Again: Answering Questions with False Premises

Published on Jul 5, 2023
Authors:
,
,
,
,

Abstract

Pre-trained language models (PLMs) have shown unprecedented potential in various fields, especially as the backbones for question-answering (QA) systems. However, they tend to be easily deceived by tricky questions such as "How many eyes does the sun have?". Such frailties of PLMs often allude to the lack of knowledge within them. In this paper, we find that the PLMs already possess the knowledge required to rebut such questions, and the key is how to activate the knowledge. To systematize this observation, we investigate the PLMs' responses to one kind of tricky questions, i.e., the false premises questions (FPQs). We annotate a FalseQA dataset containing 2365 human-written FPQs, with the corresponding explanations for the false premises and the revised true premise questions. Using FalseQA, we discover that PLMs are capable of discriminating FPQs by fine-tuning on moderate numbers (e.g., 256) of examples. PLMs also generate reasonable explanations for the false premise, which serve as rebuttals. Further replaying a few general questions during training allows PLMs to excel on FPQs and general questions simultaneously. Our work suggests that once the rebuttal ability is stimulated, knowledge inside the PLMs can be effectively utilized to handle FPQs, which incentivizes the research on PLM-based QA systems.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2307.02394 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2307.02394 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2307.02394 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.