Representation Learning in Low-rank Slate-based Recommender Systems
Abstract
The proposed algorithm uses sample-efficient representation learning to address large state and action spaces in online reinforcement learning for recommendation systems, by treating the problem as a low-rank Markov decision process.
Reinforcement learning (RL) in recommendation systems offers the potential to optimize recommendations for long-term user engagement. However, the environment often involves large state and action spaces, which makes it hard to efficiently learn and explore. In this work, we propose a sample-efficient representation learning algorithm, using the standard slate recommendation setup, to treat this as an online RL problem with low-rank Markov decision processes (MDPs). We also construct the recommender simulation environment with the proposed setup and sampling method.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper