PERL: Parameter Efficient Reinforcement Learning from Human Feedback
Abstract
Reinforcement Learning from Human Feedback (RLHF) has proven to be a strong method to align Pretrained Large Language Models (LLMs) with human preferences. But training models with RLHF is computationally expensive, and an overall complex process. In this work, we study RLHF where the underlying models are trained using the parameter efficient method of Low-Rank Adaptation (LoRA) introduced by Hu et al. [2021]. We investigate the setup of "Parameter Efficient Reinforcement Learning" (PERL), in which we perform reward model training and reinforcement learning using LoRA. We compare PERL to conventional fine-tuning (full-tuning) across various configurations for 7 benchmarks, including 2 novel datasets, of reward modeling and reinforcement learning. We find that PERL performs on par with the conventional RLHF setting, while training faster, and with less memory. This enables the high performance of RLHF, while reducing the computational burden that limits its adoption as an alignment technique for Large Language Models. We also release 2 novel thumbs up/down preference datasets: "Taskmaster Coffee", and "Taskmaster Ticketing" to promote research around RLHF.
Community
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- Improving Reinforcement Learning from Human Feedback Using Contrastive Rewards (2024)
- A Critical Evaluation of AI Feedback for Aligning Large Language Models (2024)
- Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble (2024)
- RS-DPO: A Hybrid Rejection Sampling and Direct Preference Optimization Method for Alignment of Large Language Models (2024)
- West-of-N: Synthetic Preference Generation for Improved Reward Modeling (2024)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
How PERL Revolutionizes Reinforcement Learning with Human Feedback
Links 🔗:
👉 Subscribe: https://www.youtube.com/@Arxflix
👉 Twitter: https://x.com/arxflix
👉 LMNT (Partner): https://lmnt.com/
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper