Papers
arxiv:2407.12777

Generalizable Human Gaussians for Sparse View Synthesis

Published on Jul 17, 2024
Authors:
,
,
,
,
,
,
,
,
,
,
,

Abstract

Recent progress in neural rendering has brought forth pioneering methods, such as NeRF and Gaussian Splatting, which revolutionize view rendering across various domains like AR/VR, gaming, and content creation. While these methods excel at interpolating {\em within the training data}, the challenge of generalizing to new scenes and objects from very sparse views persists. Specifically, modeling 3D humans from sparse views presents formidable hurdles due to the inherent complexity of human geometry, resulting in inaccurate reconstructions of geometry and textures. To tackle this challenge, this paper leverages recent advancements in Gaussian Splatting and introduces a new method to learn generalizable human Gaussians that allows photorealistic and accurate view-rendering of a new human subject from a limited set of sparse views in a feed-forward manner. A pivotal innovation of our approach involves reformulating the learning of 3D Gaussian parameters into a regression process defined on the 2D UV space of a human template, which allows leveraging the strong geometry prior and the advantages of 2D convolutions. In addition, a multi-scaffold is proposed to effectively represent the offset details. Our method outperforms recent methods on both within-dataset generalization as well as cross-dataset generalization settings.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2407.12777 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2407.12777 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2407.12777 in a Space README.md to link it from this page.

Collections including this paper 1