Banyan: Improved Representation Learning with Explicit Structure
Abstract
Banyan, a structured model with an entangled hierarchical tree and diagonalized message passing, matches larger transformers' performance using fewer parameters and excels in low-resource settings.
We present Banyan, a model that efficiently learns semantic representations by leveraging explicit hierarchical structure. While transformers excel at scale, they struggle in low-resource settings. Conversely recent structured models have shown promise as efficient learners, but lack performance. Banyan bridges this gap with two key innovations: an entangled hierarchical tree structure and diagonalized message passing, enabling it to outperform larger transformer models with just 14 non-embedding parameters. It excels in low-resource settings, offering a viable alternative for under-represented languages and highlighting its potential for efficient, interpretable NLP in resource-constrained environments.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper