Papers
arxiv:2407.18521

Patched MOA: optimizing inference for diverse software development tasks

Published on Jul 26

Abstract

This paper introduces Patched MOA (Mixture of Agents), an inference optimization technique that significantly enhances the performance of large language models (LLMs) across diverse software development tasks. We evaluate three inference optimization algorithms - Best of N, Mixture of Agents, and Monte Carlo Tree Search and demonstrate that Patched MOA can boost the performance of smaller models to surpass that of larger, more expensive models. Notably, our approach improves the gpt-4o-mini model's performance on the Arena-Hard-Auto benchmark by 15.52%, outperforming gpt-4-turbo at a fraction of the cost. We also apply Patched MOA to various software development workflows, showing consistent improvements in task completion rates. Our method is model-agnostic, transparent to end-users, and can be easily integrated into existing LLM pipelines. This work contributes to the growing field of LLM optimization, offering a cost-effective solution for enhancing model performance without the need for fine-tuning or larger models.

Community

Paper author

The implementation for MOA is available here - https://github.com/codelion/optillm/blob/main/moa.py

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2407.18521 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 2

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.