Papers
arxiv:2410.01066

From Natural Language to SQL: Review of LLM-based Text-to-SQL Systems

Published on Oct 1, 2024
Authors:
,
,

Abstract

A survey examines the evolution of LLM-based text-to-SQL systems, focusing on Retrieval Augmented Generation (RAG) and Graph RAGs, and identifies key challenges for improvement.

AI-generated summary

LLMs when used with Retrieval Augmented Generation (RAG), are greatly improving the SOTA of translating natural language queries to structured and correct SQL. Unlike previous reviews, this survey provides a comprehensive study of the evolution of LLM-based text-to-SQL systems, from early rule-based models to advanced LLM approaches that use (RAG) systems. We discuss benchmarks, evaluation methods, and evaluation metrics. Also, we uniquely study the use of Graph RAGs for better contextual accuracy and schema linking in these systems. Finally, we highlight key challenges such as computational efficiency, model robustness, and data privacy toward improvements of LLM-based text-to-SQL systems.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2410.01066 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2410.01066 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2410.01066 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.