Papers
arxiv:2502.19902

Optimus-2: Multimodal Minecraft Agent with Goal-Observation-Action Conditioned Policy

Published on Feb 27
Authors:
,
,
,
,

Abstract

Building an agent that can mimic human behavior patterns to accomplish various open-world tasks is a long-term goal. To enable agents to effectively learn behavioral patterns across diverse tasks, a key challenge lies in modeling the intricate relationships among observations, actions, and language. To this end, we propose Optimus-2, a novel Minecraft agent that incorporates a Multimodal Large Language Model (MLLM) for high-level planning, alongside a Goal-Observation-Action Conditioned Policy (GOAP) for low-level control. GOAP contains (1) an Action-guided Behavior Encoder that models causal relationships between observations and actions at each timestep, then dynamically interacts with the historical observation-action sequence, consolidating it into fixed-length behavior tokens, and (2) an MLLM that aligns behavior tokens with open-ended language instructions to predict actions auto-regressively. Moreover, we introduce a high-quality Minecraft Goal-Observation-Action (MGOA)} dataset, which contains 25,000 videos across 8 atomic tasks, providing about 30M goal-observation-action pairs. The automated construction method, along with the MGOA dataset, can contribute to the community's efforts to train Minecraft agents. Extensive experimental results demonstrate that Optimus-2 exhibits superior performance across atomic tasks, long-horizon tasks, and open-ended instruction tasks in Minecraft. Please see the project page at https://cybertronagent.github.io/Optimus-2.github.io/.

Community

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2502.19902 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2502.19902 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.