Papers
arxiv:2505.02625

LLaMA-Omni2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis

Published on May 5
· Submitted by poeroz on May 6
Authors:
,

Abstract

Real-time, intelligent, and natural speech interaction is an essential part of the next-generation human-computer interaction. Recent advancements have showcased the potential of building intelligent spoken chatbots based on large language models (LLMs). In this paper, we introduce LLaMA-Omni 2, a series of speech language models (SpeechLMs) ranging from 0.5B to 14B parameters, capable of achieving high-quality real-time speech interaction. LLaMA-Omni 2 is built upon the Qwen2.5 series models, integrating a speech encoder and an autoregressive streaming speech decoder. Despite being trained on only 200K multi-turn speech dialogue samples, LLaMA-Omni 2 demonstrates strong performance on several spoken question answering and speech instruction following benchmarks, surpassing previous state-of-the-art SpeechLMs like GLM-4-Voice, which was trained on millions of hours of speech data.

Community

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2505.02625 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2505.02625 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2505.02625 in a Space README.md to link it from this page.

Collections including this paper 12