LaMP-QA: A Benchmark for Personalized Long-form Question Answering
Abstract
A benchmark called LaMP-QA evaluates personalized long-form answer generation using human and automatic evaluations, demonstrating significant performance improvements with personalized context.
Personalization is essential for question answering systems that are user-centric. Despite its importance, personalization in answer generation has been relatively underexplored. This is mainly due to lack of resources for training and evaluating personalized question answering systems. We address this gap by introducing LaMP-QA -- a benchmark designed for evaluating personalized long-form answer generation. The benchmark covers questions from three major categories: (1) Arts & Entertainment, (2) Lifestyle & Personal Development, and (3) Society & Culture, encompassing over 45 subcategories in total. To assess the quality and potential impact of the LaMP-QA benchmark for personalized question answering, we conduct comprehensive human and automatic evaluations, to compare multiple evaluation strategies for evaluating generated personalized responses and measure their alignment with human preferences. Furthermore, we benchmark a number of non-personalized and personalized approaches based on open-source and proprietary large language models (LLMs). Our results show that incorporating the personalized context provided leads to performance improvements of up to 39%. The benchmark is publicly released to support future research in this area.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper