Abstract
HyperCLOVA X THINK, a reasoning-focused large language model pre-trained on vast Korean and English datasets, delivers competitive performance with enhanced vision-augmented capabilities and reduced training compute.
We introduce HyperCLOVA X THINK, the first reasoning-focused large language model in the HyperCLOVA X family, pre-trained on roughly 6 trillion high-quality Korean, and English tokens, augmented with targeted synthetic Korean data. It was implemented as a compute-memory-balanced Peri-LN Transformer scaled with muP, pre-trained through a three-stage curriculum that expands the context window to 128K tokens, and post-trained via supervised fine-tuning with Reinforcement Learning from Verifiable Rewards supports both detailed rationale and concise-answer modes. It delivers competitive performance against similarly sized models on Korea-focused benchmarks such as KMMLU, CSAT, KoBALT-700, HAERAE-1.0, and KoBigBench, while preserving robust bilingual consistency and translation quality. In addition, a vision-augmented variant matches or exceeds GPT-4.1 on the KCSAT STEM benchmark, all of which are achieved with substantially lower training compute than existing models of similar sizes. We also present a pruning and distillation technique that will soon be applied to HyperCLOVA X THINK for an open-source and business-friendly foundation model. Altogether, these capabilities position HyperCLOVA X THINK as a robust foundation for Korean AI innovation and a valuable resource for the global research community.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper