Papers
arxiv:2508.13401

AIM 2025 Rip Current Segmentation (RipSeg) Challenge Report

Published on Aug 18
Authors:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Abstract

The AIM 2025 RipSeg Challenge advances automatic rip current segmentation using deep learning techniques, domain adaptation, pretrained models, and domain generalization on the RipVIS dataset.

AI-generated summary

This report presents an overview of the AIM 2025 RipSeg Challenge, a competition designed to advance techniques for automatic rip current segmentation in still images. Rip currents are dangerous, fast-moving flows that pose a major risk to beach safety worldwide, making accurate visual detection an important and underexplored research task. The challenge builds on RipVIS, the largest available rip current dataset, and focuses on single-class instance segmentation, where precise delineation is critical to fully capture the extent of rip currents. The dataset spans diverse locations, rip current types, and camera orientations, providing a realistic and challenging benchmark. In total, 75 participants registered for this first edition, resulting in 5 valid test submissions. Teams were evaluated on a composite score combining F_1, F_2, AP_{50}, and AP_{[50:95]}, ensuring robust and application-relevant rankings. The top-performing methods leveraged deep learning architectures, domain adaptation techniques, pretrained models, and domain generalization strategies to improve performance under diverse conditions. This report outlines the dataset details, competition framework, evaluation metrics, and final results, providing insights into the current state of rip current segmentation. We conclude with a discussion of key challenges, lessons learned from the submissions, and future directions for expanding RipSeg.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2508.13401 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2508.13401 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.