ParaAegis: Parallel Protection for Flexible Privacy-preserved Federated Learning
Abstract
ParaAegis is a parallel protection framework in federated learning that balances privacy, utility, and efficiency through strategic model partitioning and a distributed voting mechanism.
Federated learning (FL) faces a critical dilemma: existing protection mechanisms like differential privacy (DP) and homomorphic encryption (HE) enforce a rigid trade-off, forcing a choice between model utility and computational efficiency. This lack of flexibility hinders the practical implementation. To address this, we introduce ParaAegis, a parallel protection framework designed to give practitioners flexible control over the privacy-utility-efficiency balance. Our core innovation is a strategic model partitioning scheme. By applying lightweight DP to the less critical, low norm portion of the model while protecting the remainder with HE, we create a tunable system. A distributed voting mechanism ensures consensus on this partitioning. Theoretical analysis confirms the adjustments between efficiency and utility with the same privacy. Crucially, the experimental results demonstrate that by adjusting the hyperparameters, our method enables flexible prioritization between model accuracy and training time.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper