Abstract
A state-free policy using only visual observations achieves better spatial generalization and data efficiency in robot manipulation tasks compared to state-based policies.
Imitation-learning-based visuomotor policies have been widely used in robot manipulation, where both visual observations and proprioceptive states are typically adopted together for precise control. However, in this study, we find that this common practice makes the policy overly reliant on the proprioceptive state input, which causes overfitting to the training trajectories and results in poor spatial generalization. On the contrary, we propose the State-free Policy, removing the proprioceptive state input and predicting actions only conditioned on visual observations. The State-free Policy is built in the relative end-effector action space, and should ensure the full task-relevant visual observations, here provided by dual wide-angle wrist cameras. Empirical results demonstrate that the State-free policy achieves significantly stronger spatial generalization than the state-based policy: in real-world tasks such as pick-and-place, challenging shirt-folding, and complex whole-body manipulation, spanning multiple robot embodiments, the average success rate improves from 0\% to 85\% in height generalization and from 6\% to 64\% in horizontal generalization. Furthermore, they also show advantages in data efficiency and cross-embodiment adaptation, enhancing their practicality for real-world deployment.
Community
Imitation-learning-based visuomotor policies have been widely used in robot manipulation, where both visual observations and proprioceptive states are typically adopted together for precise control. However, in this study, we find that this common practice makes the policy overly reliant on the proprioceptive state input, which causes overfitting to the training trajectories and results in poor spatial generalization. On the contrary, we propose the State-free Policy, removing the proprioceptive state input and predicting actions only conditioned on visual observations. The State-free Policy is built in the relative end-effector action space, and should ensure the full task-relevant visual observations, here provided by dual wide-angle wrist cameras. Empirical results demonstrate that the State-free policy achieves significantly stronger spatial generalization than the state-based policy: in real-world tasks such as pick-and-place, challenging shirt-folding, and complex whole-body manipulation, spanning multiple robot embodiments, the average success rate improves from 0% to 85% in height generalization and from 6% to 64% in horizontal generalization. Furthermore, they also show advantages in data efficiency and cross-embodiment adaptation, enhancing their practicality for real-world deployment. Discover more by visiting: https://statefreepolicy.github.io.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- Imagination at Inference: Synthesizing In-Hand Views for Robust Visuomotor Policy Inference (2025)
- AimBot: A Simple Auxiliary Visual Cue to Enhance Spatial Awareness of Visuomotor Policies (2025)
- OmniD: Generalizable Robot Manipulation Policy via Image-Based BEV Representation (2025)
- VGGT-DP: Generalizable Robot Control via Vision Foundation Models (2025)
- Grounding Actions in Camera Space: Observation-Centric Vision-Language-Action Policy (2025)
- MV-UMI: A Scalable Multi-View Interface for Cross-Embodiment Learning (2025)
- Video Generators are Robot Policies (2025)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper