Papers
arxiv:2510.01070

Eliciting Secret Knowledge from Language Models

Published on Oct 1
· Submitted by Bartosz Cywiński on Oct 2
Authors:
,
,
,
,
,

Abstract

Researchers develop and evaluate techniques to uncover hidden knowledge in large language models through black-box and white-box methods, with prefill attacks and logit lens being particularly effective.

AI-generated summary

We study secret elicitation: discovering knowledge that an AI possesses but does not explicitly verbalize. As a testbed, we train three families of large language models (LLMs) to possess specific knowledge that they apply downstream but deny knowing when asked directly. For example, in one setting, we train an LLM to generate replies that are consistent with knowing the user is female, while denying this knowledge when asked directly. We then design various black-box and white-box secret elicitation techniques and evaluate them based on whether they can help an LLM auditor successfully guess the secret knowledge. Many of our techniques improve on simple baselines. Our most effective techniques (performing best in 2/3 settings) are based on prefill attacks, a black-box technique where the LLM reveals secret knowledge when generating a completion from a predefined prefix. In our remaining setting, white-box techniques based on logit lens and sparse autoencoders (SAEs) are most effective. We release our models and code, establishing a public benchmark for evaluating secret elicitation methods.

Community

Paper author Paper submitter

We study secret elicitation: discovering knowledge that an AI possesses but does not explicitly verbalize. As a testbed, we train three families of large language models (LLMs) to possess specific knowledge that they apply downstream but deny knowing when asked directly. For example, in one setting, we train an LLM to generate replies that are consistent with knowing the user is female, while denying this knowledge when asked directly. We then design various black-box and white-box secret elicitation techniques and evaluate them based on whether they can help an LLM auditor successfully guess the secret knowledge. Many of our techniques improve on simple baselines. Our most effective techniques (performing best in 2/3 settings) are based on prefill attacks, a black-box technique where the LLM reveals secret knowledge when generating a completion from a predefined prefix. In our remaining setting, white-box techniques based on logit lens and sparse autoencoders (SAEs) are most effective. We release our models and code, establishing a public benchmark for evaluating secret elicitation methods.

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2510.01070 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2510.01070 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2510.01070 in a Space README.md to link it from this page.

Collections including this paper 3