An Interpretability-Guided Framework for Responsible Synthetic Data Generation in Emotional Text
Abstract
SHAP-guided synthetic data generation enhances emotion recognition performance using LLMs, but synthetic text lacks vocabulary richness and complex expressions compared to real data.
Emotion recognition from social media is critical for understanding public sentiment, but accessing training data has become prohibitively expensive due to escalating API costs and platform restrictions. We introduce an interpretability-guided framework where Shapley Additive Explanations (SHAP) provide principled guidance for LLM-based synthetic data generation. With sufficient seed data, SHAP-guided approach matches real data performance, significantly outperforms naïve generation, and substantially improves classification for underrepresented emotion classes. However, our linguistic analysis reveals that synthetic text exhibits reduced vocabulary richness and fewer personal or temporally complex expressions than authentic posts. This work provides both a practical framework for responsible synthetic data generation and a critical perspective on its limitations, underscoring that the future of trustworthy AI depends on navigating the trade-offs between synthetic utility and real-world authenticity.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper