- BERTRAM: Improved Word Embeddings Have Big Impact on Contextualized Model Performance Pretraining deep language models has led to large performance gains in NLP. Despite this success, Schick and Sch\"utze (2020) recently showed that these models struggle to understand rare words. For static word embeddings, this problem has been addressed by separately learning representations for rare words. In this work, we transfer this idea to pretrained language models: We introduce BERTRAM, a powerful architecture based on BERT that is capable of inferring high-quality embeddings for rare words that are suitable as input representations for deep language models. This is achieved by enabling the surface form and contexts of a word to interact with each other in a deep architecture. Integrating BERTRAM into BERT leads to large performance increases due to improved representations of rare and medium frequency words on both a rare word probing task and three downstream tasks. 2 authors · Oct 16, 2019
1 Improving Reasoning Performance in Large Language Models via Representation Engineering Recent advancements in large language models (LLMs) have resulted in increasingly anthropomorphic language concerning the ability of LLMs to reason. Whether reasoning in LLMs should be understood to be inherently different is, however, widely debated. We propose utilizing a representation engineering approach wherein model activations are read from the residual stream of an LLM when processing a reasoning task. The activations are used to derive a control vector that is applied to the model as an inference-time intervention, modulating the representational space of the model, to improve performance on the specified task. We publish the code for deriving control vectors and analyzing model representations. The method allows us to improve performance on reasoning benchmarks and assess how control vectors influence the final logit distribution of a model via metrics such as KL divergence and entropy. We apply control vectors to Mistral-7B-Instruct and a range of Pythia models on an inductive, a deductive and mathematical reasoning task. We show that an LLM can, to a certain degree, be controlled to improve its perceived reasoning ability by modulating activations. The intervention is dependent upon the ability to reliably extract the model's typical state when correctly solving a task. Our results suggest that reasoning performance can be modulated in the same manner as other information-processing tasks performed by LLMs and demonstrate that we are capable of improving performance on specific tasks via a simple intervention on the residual stream with no additional training. 3 authors · Apr 28
- Training LLMs for Generating IEC 61131-3 Structured Text with Online Feedback IEC 61131-3 Structured Text (ST) is a widely used programming language for programmable logic controllers (PLCs) in automation systems. However, generating ST code with LLMs poses unique challenges due to limited data in public training datasets and the complexity of ST language syntax. This paper proposes an approach to fine-tune LLMs for the generation of ST code that leverages a preference-based learning method through an online process involving compiler feedback and evaluation from an LLM-based ST expert. In this framework, the model is iteratively refined and generates new training samples, which are subsequently evaluated by a compiler for syntactical correctness and by a specialized LLM that excels at assessing semantic accuracy, though it is not optimized for code generation itself. This approach results in marked improvements for the trained LLM, leading to higher compilation success rates and better semantic precision. As a result, the framework proves highly suitable for industrial automation applications and outperforms state-of-the-art models. 4 authors · Oct 29, 2024
- ERIT Lightweight Multimodal Dataset for Elderly Emotion Recognition and Multimodal Fusion Evaluation ERIT is a novel multimodal dataset designed to facilitate research in a lightweight multimodal fusion. It contains text and image data collected from videos of elderly individuals reacting to various situations, as well as seven emotion labels for each data sample. Because of the use of labeled images of elderly users reacting emotionally, it is also facilitating research on emotion recognition in an underrepresented age group in machine learning visual emotion recognition. The dataset is validated through comprehensive experiments indicating its importance in neural multimodal fusion research. 2 authors · Jul 25, 2024
- Hallucinations in Neural Automatic Speech Recognition: Identifying Errors and Hallucinatory Models Hallucinations are a type of output error produced by deep neural networks. While this has been studied in natural language processing, they have not been researched previously in automatic speech recognition. Here, we define hallucinations in ASR as transcriptions generated by a model that are semantically unrelated to the source utterance, yet still fluent and coherent. The similarity of hallucinations to probable natural language outputs of the model creates a danger of deception and impacts the credibility of the system. We show that commonly used metrics, such as word error rates, cannot differentiate between hallucinatory and non-hallucinatory models. To address this, we propose a perturbation-based method for assessing the susceptibility of an automatic speech recognition (ASR) model to hallucination at test time, which does not require access to the training dataset. We demonstrate that this method helps to distinguish between hallucinatory and non-hallucinatory models that have similar baseline word error rates. We further explore the relationship between the types of ASR errors and the types of dataset noise to determine what types of noise are most likely to create hallucinatory outputs. We devise a framework for identifying hallucinations by analysing their semantic connection with the ground truth and their fluency. Finally, we discover how to induce hallucinations with a random noise injection to the utterance. 2 authors · Jan 3, 2024
- Hatemoji: A Test Suite and Adversarially-Generated Dataset for Benchmarking and Detecting Emoji-based Hate Detecting online hate is a complex task, and low-performing models have harmful consequences when used for sensitive applications such as content moderation. Emoji-based hate is an emerging challenge for automated detection. We present HatemojiCheck, a test suite of 3,930 short-form statements that allows us to evaluate performance on hateful language expressed with emoji. Using the test suite, we expose weaknesses in existing hate detection models. To address these weaknesses, we create the HatemojiBuild dataset using a human-and-model-in-the-loop approach. Models built with these 5,912 adversarial examples perform substantially better at detecting emoji-based hate, while retaining strong performance on text-only hate. Both HatemojiCheck and HatemojiBuild are made publicly available. See our Github Repository (https://github.com/HannahKirk/Hatemoji). HatemojiCheck, HatemojiBuild, and the final Hatemoji Model are also available on HuggingFace (https://huggingface.co/datasets/HannahRoseKirk/). 5 authors · Aug 12, 2021
- HateCheck: Functional Tests for Hate Speech Detection Models Detecting online hate is a difficult task that even state-of-the-art models struggle with. Typically, hate speech detection models are evaluated by measuring their performance on held-out test data using metrics such as accuracy and F1 score. However, this approach makes it difficult to identify specific model weak points. It also risks overestimating generalisable model performance due to increasingly well-evidenced systematic gaps and biases in hate speech datasets. To enable more targeted diagnostic insights, we introduce HateCheck, a suite of functional tests for hate speech detection models. We specify 29 model functionalities motivated by a review of previous research and a series of interviews with civil society stakeholders. We craft test cases for each functionality and validate their quality through a structured annotation process. To illustrate HateCheck's utility, we test near-state-of-the-art transformer models as well as two popular commercial models, revealing critical model weaknesses. 6 authors · Dec 31, 2020
- BOP Challenge 2020 on 6D Object Localization This paper presents the evaluation methodology, datasets, and results of the BOP Challenge 2020, the third in a series of public competitions organized with the goal to capture the status quo in the field of 6D object pose estimation from an RGB-D image. In 2020, to reduce the domain gap between synthetic training and real test RGB images, the participants were provided 350K photorealistic training images generated by BlenderProc4BOP, a new open-source and light-weight physically-based renderer (PBR) and procedural data generator. Methods based on deep neural networks have finally caught up with methods based on point pair features, which were dominating previous editions of the challenge. Although the top-performing methods rely on RGB-D image channels, strong results were achieved when only RGB channels were used at both training and test time - out of the 26 evaluated methods, the third method was trained on RGB channels of PBR and real images, while the fifth on RGB channels of PBR images only. Strong data augmentation was identified as a key component of the top-performing CosyPose method, and the photorealism of PBR images was demonstrated effective despite the augmentation. The online evaluation system stays open and is available on the project website: bop.felk.cvut.cz. 8 authors · Sep 15, 2020
4 SciPrompt: Knowledge-augmented Prompting for Fine-grained Categorization of Scientific Topics Prompt-based fine-tuning has become an essential method for eliciting information encoded in pre-trained language models for a variety of tasks, including text classification. For multi-class classification tasks, prompt-based fine-tuning under low-resource scenarios has resulted in performance levels comparable to those of fully fine-tuning methods. Previous studies have used crafted prompt templates and verbalizers, mapping from the label terms space to the class space, to solve the classification problem as a masked language modeling task. However, cross-domain and fine-grained prompt-based fine-tuning with an automatically enriched verbalizer remains unexplored, mainly due to the difficulty and costs of manually selecting domain label terms for the verbalizer, which requires humans with domain expertise. To address this challenge, we introduce SciPrompt, a framework designed to automatically retrieve scientific topic-related terms for low-resource text classification tasks. To this end, we select semantically correlated and domain-specific label terms within the context of scientific literature for verbalizer augmentation. Furthermore, we propose a new verbalization strategy that uses correlation scores as additional weights to enhance the prediction performance of the language model during model tuning. Our method outperforms state-of-the-art, prompt-based fine-tuning methods on scientific text classification tasks under few and zero-shot settings, especially in classifying fine-grained and emerging scientific topics. 5 authors · Oct 2, 2024 3
- Is Self-Supervision Enough? Benchmarking Foundation Models Against End-to-End Training for Mitotic Figure Classification Foundation models (FMs), i.e., models trained on a vast amount of typically unlabeled data, have become popular and available recently for the domain of histopathology. The key idea is to extract semantically rich vectors from any input patch, allowing for the use of simple subsequent classification networks potentially reducing the required amounts of labeled data, and increasing domain robustness. In this work, we investigate to which degree this also holds for mitotic figure classification. Utilizing two popular public mitotic figure datasets, we compared linear probing of five publicly available FMs against models trained on ImageNet and a simple ResNet50 end-to-end-trained baseline. We found that the end-to-end-trained baseline outperformed all FM-based classifiers, regardless of the amount of data provided. Additionally, we did not observe the FM-based classifiers to be more robust against domain shifts, rendering both of the above assumptions incorrect. 7 authors · Dec 9, 2024
- Survey of Design Paradigms for Social Robots The demand for social robots in fields like healthcare, education, and entertainment increases due to their emotional adaptation features. These robots leverage multimodal communication, incorporating speech, facial expressions, and gestures to enhance user engagement and emotional support. The understanding of design paradigms of social robots is obstructed by the complexity of the system and the necessity to tune it to a specific task. This article provides a structured review of social robot design paradigms, categorizing them into cognitive architectures, role design models, linguistic models, communication flow, activity system models, and integrated design models. By breaking down the articles on social robot design and application based on these paradigms, we highlight the strengths and areas for improvement in current approaches. We further propose our original integrated design model that combines the most important aspects of the design of social robots. Our approach shows the importance of integrating operational, communicational, and emotional dimensions to create more adaptive and empathetic interactions between robots and humans. 5 authors · Jul 30, 2024
- OAT: Object-Level Attention Transformer for Gaze Scanpath Prediction Visual search is important in our daily life. The efficient allocation of visual attention is critical to effectively complete visual search tasks. Prior research has predominantly modelled the spatial allocation of visual attention in images at the pixel level, e.g. using a saliency map. However, emerging evidence shows that visual attention is guided by objects rather than pixel intensities. This paper introduces the Object-level Attention Transformer (OAT), which predicts human scanpaths as they search for a target object within a cluttered scene of distractors. OAT uses an encoder-decoder architecture. The encoder captures information about the position and appearance of the objects within an image and about the target. The decoder predicts the gaze scanpath as a sequence of object fixations, by integrating output features from both the encoder and decoder. We also propose a new positional encoding that better reflects spatial relationships between objects. We evaluated OAT on the Amazon book cover dataset and a new dataset for visual search that we collected. OAT's predicted gaze scanpaths align more closely with human gaze patterns, compared to predictions by algorithms based on spatial attention on both established metrics and a novel behavioural-based metric. Our results demonstrate the generalization ability of OAT, as it accurately predicts human scanpaths for unseen layouts and target objects. 5 authors · Jul 18, 2024
- BOP Challenge 2023 on Detection, Segmentation and Pose Estimation of Seen and Unseen Rigid Objects We present the evaluation methodology, datasets and results of the BOP Challenge 2023, the fifth in a series of public competitions organized to capture the state of the art in model-based 6D object pose estimation from an RGB/RGB-D image and related tasks. Besides the three tasks from 2022 (model-based 2D detection, 2D segmentation, and 6D localization of objects seen during training), the 2023 challenge introduced new variants of these tasks focused on objects unseen during training. In the new tasks, methods were required to learn new objects during a short onboarding stage (max 5 minutes, 1 GPU) from provided 3D object models. The best 2023 method for 6D localization of unseen objects (GenFlow) notably reached the accuracy of the best 2020 method for seen objects (CosyPose), although being noticeably slower. The best 2023 method for seen objects (GPose) achieved a moderate accuracy improvement but a significant 43% run-time improvement compared to the best 2022 counterpart (GDRNPP). Since 2017, the accuracy of 6D localization of seen objects has improved by more than 50% (from 56.9 to 85.6 AR_C). The online evaluation system stays open and is available at: http://bop.felk.cvut.cz/. 10 authors · Mar 14, 2024
- An open-source robust machine learning platform for real-time detection and classification of 2D material flakes The most widely used method for obtaining high-quality two-dimensional materials is through mechanical exfoliation of bulk crystals. Manual identification of suitable flakes from the resulting random distribution of crystal thicknesses and sizes on a substrate is a time-consuming, tedious task. Here, we present a platform for fully automated scanning, detection, and classification of two-dimensional materials, the source code of which we make openly available. Our platform is designed to be accurate, reliable, fast, and versatile in integrating new materials, making it suitable for everyday laboratory work. The implementation allows fully automated scanning and analysis of wafers with an average inference time of 100 ms for images of 2.3 Mpixels. The developed detection algorithm is based on a combination of the flakes' optical contrast toward the substrate and their geometric shape. We demonstrate that it is able to detect the majority of exfoliated flakes of various materials, with an average recall (AR50) between 67% and 89%. We also show that the algorithm can be trained with as few as five flakes of a given material, which we demonstrate for the examples of few-layer graphene, WSe_2, MoSe_2, CrI_3, 1T-TaS_2 and hexagonal BN. Our platform has been tested over a two-year period, during which more than 10^6 images of multiple different materials were acquired by over 30 individual researchers. 11 authors · Jun 26, 2023
- BOP Challenge 2022 on Detection, Segmentation and Pose Estimation of Specific Rigid Objects We present the evaluation methodology, datasets and results of the BOP Challenge 2022, the fourth in a series of public competitions organized with the goal to capture the status quo in the field of 6D object pose estimation from an RGB/RGB-D image. In 2022, we witnessed another significant improvement in the pose estimation accuracy -- the state of the art, which was 56.9 AR_C in 2019 (Vidal et al.) and 69.8 AR_C in 2020 (CosyPose), moved to new heights of 83.7 AR_C (GDRNPP). Out of 49 pose estimation methods evaluated since 2019, the top 18 are from 2022. Methods based on point pair features, which were introduced in 2010 and achieved competitive results even in 2020, are now clearly outperformed by deep learning methods. The synthetic-to-real domain gap was again significantly reduced, with 82.7 AR_C achieved by GDRNPP trained only on synthetic images from BlenderProc. The fastest variant of GDRNPP reached 80.5 AR_C with an average time per image of 0.23s. Since most of the recent methods for 6D object pose estimation begin by detecting/segmenting objects, we also started evaluating 2D object detection and segmentation performance based on the COCO metrics. Compared to the Mask R-CNN results from CosyPose in 2020, detection improved from 60.3 to 77.3 AP_C and segmentation from 40.5 to 58.7 AP_C. The online evaluation system stays open and is available at: http://bop.felk.cvut.cz/{bop.felk.cvut.cz}. 8 authors · Feb 25, 2023
5 BOP Challenge 2024 on Model-Based and Model-Free 6D Object Pose Estimation We present the evaluation methodology, datasets and results of the BOP Challenge 2024, the sixth in a series of public competitions organized to capture the state of the art in 6D object pose estimation and related tasks. In 2024, our goal was to transition BOP from lab-like setups to real-world scenarios. First, we introduced new model-free tasks, where no 3D object models are available and methods need to onboard objects just from provided reference videos. Second, we defined a new, more practical 6D object detection task where identities of objects visible in a test image are not provided as input. Third, we introduced new BOP-H3 datasets recorded with high-resolution sensors and AR/VR headsets, closely resembling real-world scenarios. BOP-H3 include 3D models and onboarding videos to support both model-based and model-free tasks. Participants competed on seven challenge tracks, each defined by a task, object onboarding setup, and dataset group. Notably, the best 2024 method for model-based 6D localization of unseen objects (FreeZeV2.1) achieves 22% higher accuracy on BOP-Classic-Core than the best 2023 method (GenFlow), and is only 4% behind the best 2023 method for seen objects (GPose2023) although being significantly slower (24.9 vs 2.7s per image). A more practical 2024 method for this task is Co-op which takes only 0.8s per image and is 25X faster and 13% more accurate than GenFlow. Methods have a similar ranking on 6D detection as on 6D localization but higher run time. On model-based 2D detection of unseen objects, the best 2024 method (MUSE) achieves 21% relative improvement compared to the best 2023 method (CNOS). However, the 2D detection accuracy for unseen objects is still noticealy (-53%) behind the accuracy for seen objects (GDet2023). The online evaluation system stays open and is available at http://bop.felk.cvut.cz/ 19 authors · Apr 3 2
- Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset Automatic speech recognition (ASR) on low resource languages improves the access of linguistic minorities to technological advantages provided by artificial intelligence (AI). In this paper, we address the problem of data scarcity for the Hong Kong Cantonese language by creating a new Cantonese dataset. Our dataset, Multi-Domain Cantonese Corpus (MDCC), consists of 73.6 hours of clean read speech paired with transcripts, collected from Cantonese audiobooks from Hong Kong. It comprises philosophy, politics, education, culture, lifestyle and family domains, covering a wide range of topics. We also review all existing Cantonese datasets and analyze them according to their speech type, data source, total size and availability. We further conduct experiments with Fairseq S2T Transformer, a state-of-the-art ASR model, on the biggest existing dataset, Common Voice zh-HK, and our proposed MDCC, and the results show the effectiveness of our dataset. In addition, we create a powerful and robust Cantonese ASR model by applying multi-dataset learning on MDCC and Common Voice zh-HK. 12 authors · Jan 7, 2022
- ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation Code-switching is a speech phenomenon occurring when a speaker switches language during a conversation. Despite the spontaneous nature of code-switching in conversational spoken language, most existing works collect code-switching data from read speech instead of spontaneous speech. ASCEND (A Spontaneous Chinese-English Dataset) is a high-quality Mandarin Chinese-English code-switching corpus built on spontaneous multi-turn conversational dialogue sources collected in Hong Kong. We report ASCEND's design and procedure for collecting the speech data, including annotations. ASCEND consists of 10.62 hours of clean speech, collected from 23 bilingual speakers of Chinese and English. Furthermore, we conduct baseline experiments using pre-trained wav2vec 2.0 models, achieving a best performance of 22.69\% character error rate and 27.05% mixed error rate. 14 authors · Dec 12, 2021