Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEfficient Multi-Instance Generation with Janus-Pro-Dirven Prompt Parsing
Recent advances in text-guided diffusion models have revolutionized conditional image generation, yet they struggle to synthesize complex scenes with multiple objects due to imprecise spatial grounding and limited scalability. We address these challenges through two key modules: 1) Janus-Pro-driven Prompt Parsing, a prompt-layout parsing module that bridges text understanding and layout generation via a compact 1B-parameter architecture, and 2) MIGLoRA, a parameter-efficient plug-in integrating Low-Rank Adaptation (LoRA) into UNet (SD1.5) and DiT (SD3) backbones. MIGLoRA is capable of preserving the base model's parameters and ensuring plug-and-play adaptability, minimizing architectural intrusion while enabling efficient fine-tuning. To support a comprehensive evaluation, we create DescripBox and DescripBox-1024, benchmarks that span diverse scenes and resolutions. The proposed method achieves state-of-the-art performance on COCO and LVIS benchmarks while maintaining parameter efficiency, demonstrating superior layout fidelity and scalability for open-world synthesis.
Re-imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D, alleviate Janus problem and Beyond
Although text-to-image diffusion models have made significant strides in generating images from text, they are sometimes more inclined to generate images like the data on which the model was trained rather than the provided text. This limitation has hindered their usage in both 2D and 3D applications. To address this problem, we explored the use of negative prompts but found that the current implementation fails to produce desired results, particularly when there is an overlap between the main and negative prompts. To overcome this issue, we propose Perp-Neg, a new algorithm that leverages the geometrical properties of the score space to address the shortcomings of the current negative prompts algorithm. Perp-Neg does not require any training or fine-tuning of the model. Moreover, we experimentally demonstrate that Perp-Neg provides greater flexibility in generating images by enabling users to edit out unwanted concepts from the initially generated images in 2D cases. Furthermore, to extend the application of Perp-Neg to 3D, we conducted a thorough exploration of how Perp-Neg can be used in 2D to condition the diffusion model to generate desired views, rather than being biased toward the canonical views. Finally, we applied our 2D intuition to integrate Perp-Neg with the state-of-the-art text-to-3D (DreamFusion) method, effectively addressing its Janus (multi-head) problem. Our project page is available at https://Perp-Neg.github.io/
Debiasing Scores and Prompts of 2D Diffusion for View-consistent Text-to-3D Generation
Existing score-distilling text-to-3D generation techniques, despite their considerable promise, often encounter the view inconsistency problem. One of the most notable issues is the Janus problem, where the most canonical view of an object (e.g., face or head) appears in other views. In this work, we explore existing frameworks for score-distilling text-to-3D generation and identify the main causes of the view inconsistency problem -- the embedded bias of 2D diffusion models. Based on these findings, we propose two approaches to debias the score-distillation frameworks for view-consistent text-to-3D generation. Our first approach, called score debiasing, involves cutting off the score estimated by 2D diffusion models and gradually increasing the truncation value throughout the optimization process. Our second approach, called prompt debiasing, identifies conflicting words between user prompts and view prompts using a language model, and adjusts the discrepancy between view prompts and the viewing direction of an object. Our experimental results show that our methods improve the realism of the generated 3D objects by significantly reducing artifacts and achieve a good trade-off between faithfulness to the 2D diffusion models and 3D consistency with little overhead. Our project page is available at~https://susunghong.github.io/Debiased-Score-Distillation-Sampling/.
Deep Geometric Moments Promote Shape Consistency in Text-to-3D Generation
To address the data scarcity associated with 3D assets, 2D-lifting techniques such as Score Distillation Sampling (SDS) have become a widely adopted practice in text-to-3D generation pipelines. However, the diffusion models used in these techniques are prone to viewpoint bias and thus lead to geometric inconsistencies such as the Janus problem. To counter this, we introduce MT3D, a text-to-3D generative model that leverages a high-fidelity 3D object to overcome viewpoint bias and explicitly infuse geometric understanding into the generation pipeline. Firstly, we employ depth maps derived from a high-quality 3D model as control signals to guarantee that the generated 2D images preserve the fundamental shape and structure, thereby reducing the inherent viewpoint bias. Next, we utilize deep geometric moments to ensure geometric consistency in the 3D representation explicitly. By incorporating geometric details from a 3D asset, MT3D enables the creation of diverse and geometrically consistent objects, thereby improving the quality and usability of our 3D representations.
AvatarVerse: High-quality & Stable 3D Avatar Creation from Text and Pose
Creating expressive, diverse and high-quality 3D avatars from highly customized text descriptions and pose guidance is a challenging task, due to the intricacy of modeling and texturing in 3D that ensure details and various styles (realistic, fictional, etc). We present AvatarVerse, a stable pipeline for generating expressive high-quality 3D avatars from nothing but text descriptions and pose guidance. In specific, we introduce a 2D diffusion model conditioned on DensePose signal to establish 3D pose control of avatars through 2D images, which enhances view consistency from partially observed scenarios. It addresses the infamous Janus Problem and significantly stablizes the generation process. Moreover, we propose a progressive high-resolution 3D synthesis strategy, which obtains substantial improvement over the quality of the created 3D avatars. To this end, the proposed AvatarVerse pipeline achieves zero-shot 3D modeling of 3D avatars that are not only more expressive, but also in higher quality and fidelity than previous works. Rigorous qualitative evaluations and user studies showcase AvatarVerse's superiority in synthesizing high-fidelity 3D avatars, leading to a new standard in high-quality and stable 3D avatar creation. Our project page is: https://avatarverse3d.github.io
EfficientDreamer: High-Fidelity and Robust 3D Creation via Orthogonal-view Diffusion Prior
While the image diffusion model has made significant strides in text-driven 3D content creation, it often falls short in accurately capturing the intended meaning of the text prompt, particularly with respect to direction information. This shortcoming gives rise to the Janus problem, where multi-faced 3D models are produced with the guidance of such diffusion models. In this paper, we present a robust pipeline for generating high-fidelity 3D content with orthogonal-view image guidance. Specifically, we introduce a novel 2D diffusion model that generates an image consisting of four orthogonal-view sub-images for the given text prompt. The 3D content is then created with this diffusion model, which enhances 3D consistency and provides strong structured semantic priors. This addresses the infamous Janus problem and significantly promotes generation efficiency. Additionally, we employ a progressive 3D synthesis strategy that results in substantial improvement in the quality of the created 3D contents. Both quantitative and qualitative evaluations show that our method demonstrates a significant improvement over previous text-to-3D techniques.
ShareGPT-4o-Image: Aligning Multimodal Models with GPT-4o-Level Image Generation
Recent advances in multimodal generative models have unlocked photorealistic, instruction-aligned image generation, yet leading systems like GPT-4o-Image remain proprietary and inaccessible. To democratize these capabilities, we present ShareGPT-4o-Image, the first dataset comprising 45K text-to-image and 46K text-and-image-to-image data, all synthesized using GPT-4o's image generation capabilities for distilling its advanced image generation abilities. Leveraging this dataset, we develop Janus-4o, a multimodal large language model capable of both text-to-image and text-and-image-to-image generation. Janus-4o not only significantly improves text-to-image generation over its predecessor, Janus-Pro, but also newly supports text-and-image-to-image generation. Notably, it achieves impressive performance in text-and-image-to-image generation from scratch, using only 91K synthetic samples and 6 hours of training on an 8 A800-GPU machine. We hope the release of ShareGPT-4o-Image and Janus-4o will foster open research in photorealistic, instruction-aligned image generation.
MME-Unify: A Comprehensive Benchmark for Unified Multimodal Understanding and Generation Models
Existing MLLM benchmarks face significant challenges in evaluating Unified MLLMs (U-MLLMs) due to: 1) lack of standardized benchmarks for traditional tasks, leading to inconsistent comparisons; 2) absence of benchmarks for mixed-modality generation, which fails to assess multimodal reasoning capabilities. We present a comprehensive evaluation framework designed to systematically assess U-MLLMs. Our benchmark includes: Standardized Traditional Task Evaluation. We sample from 12 datasets, covering 10 tasks with 30 subtasks, ensuring consistent and fair comparisons across studies." 2. Unified Task Assessment. We introduce five novel tasks testing multimodal reasoning, including image editing, commonsense QA with image generation, and geometric reasoning. 3. Comprehensive Model Benchmarking. We evaluate 12 leading U-MLLMs, such as Janus-Pro, EMU3, VILA-U, and Gemini2-flash, alongside specialized understanding (e.g., Claude-3.5-Sonnet) and generation models (e.g., DALL-E-3). Our findings reveal substantial performance gaps in existing U-MLLMs, highlighting the need for more robust models capable of handling mixed-modality tasks effectively. The code and evaluation data can be found in https://mme-unify.github.io/.
Viewpoint Consistency in 3D Generation via Attention and CLIP Guidance
Despite recent advances in text-to-3D generation techniques, current methods often suffer from geometric inconsistencies, commonly referred to as the Janus Problem. This paper identifies the root cause of the Janus Problem: viewpoint generation bias in diffusion models, which creates a significant gap between the actual generated viewpoint and the expected one required for optimizing the 3D model. To address this issue, we propose a tuning-free approach called the Attention and CLIP Guidance (ACG) mechanism. ACG enhances desired viewpoints by adaptively controlling cross-attention maps, employs CLIP-based view-text similarities to filter out erroneous viewpoints, and uses a coarse-to-fine optimization strategy with staged prompts to progressively refine 3D generation. Extensive experiments demonstrate that our method significantly reduces the Janus Problem without compromising generation speed, establishing ACG as an efficient, plug-and-play component for existing text-to-3D frameworks.
BoostDream: Efficient Refining for High-Quality Text-to-3D Generation from Multi-View Diffusion
Witnessing the evolution of text-to-image diffusion models, significant strides have been made in text-to-3D generation. Currently, two primary paradigms dominate the field of text-to-3D: the feed-forward generation solutions, capable of swiftly producing 3D assets but often yielding coarse results, and the Score Distillation Sampling (SDS) based solutions, known for generating high-fidelity 3D assets albeit at a slower pace. The synergistic integration of these methods holds substantial promise for advancing 3D generation techniques. In this paper, we present BoostDream, a highly efficient plug-and-play 3D refining method designed to transform coarse 3D assets into high-quality. The BoostDream framework comprises three distinct processes: (1) We introduce 3D model distillation that fits differentiable representations from the 3D assets obtained through feed-forward generation. (2) A novel multi-view SDS loss is designed, which utilizes a multi-view aware 2D diffusion model to refine the 3D assets. (3) We propose to use prompt and multi-view consistent normal maps as guidance in refinement.Our extensive experiment is conducted on different differentiable 3D representations, revealing that BoostDream excels in generating high-quality 3D assets rapidly, overcoming the Janus problem compared to conventional SDS-based methods. This breakthrough signifies a substantial advancement in both the efficiency and quality of 3D generation processes.
Instant3D: Instant Text-to-3D Generation
Text-to-3D generation, which aims to synthesize vivid 3D objects from text prompts, has attracted much attention from the computer vision community. While several existing works have achieved impressive results for this task, they mainly rely on a time-consuming optimization paradigm. Specifically, these methods optimize a neural field from scratch for each text prompt, taking approximately one hour or more to generate one object. This heavy and repetitive training cost impedes their practical deployment. In this paper, we propose a novel framework for fast text-to-3D generation, dubbed Instant3D. Once trained, Instant3D is able to create a 3D object for an unseen text prompt in less than one second with a single run of a feedforward network. We achieve this remarkable speed by devising a new network that directly constructs a 3D triplane from a text prompt. The core innovation of our Instant3D lies in our exploration of strategies to effectively inject text conditions into the network. Furthermore, we propose a simple yet effective activation function, the scaled-sigmoid, to replace the original sigmoid function, which speeds up the training convergence by more than ten times. Finally, to address the Janus (multi-head) problem in 3D generation, we propose an adaptive Perp-Neg algorithm that can dynamically adjust its concept negation scales according to the severity of the Janus problem during training, effectively reducing the multi-head effect. Extensive experiments on a wide variety of benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods both qualitatively and quantitatively, while achieving significantly better efficiency. The project page is at https://ming1993li.github.io/Instant3DProj.
EAR: Erasing Concepts from Unified Autoregressive Models
Autoregressive (AR) models have achieved unified and strong performance across both visual understanding and image generation tasks. However, removing undesired concepts from AR models while maintaining overall generation quality remains an open challenge. In this paper, we propose Erasure Autoregressive Model (EAR), a fine-tuning method for effective and utility-preserving concept erasure in AR models. Specifically, we introduce Windowed Gradient Accumulation (WGA) strategy to align patch-level decoding with erasure objectives, and Thresholded Loss Masking (TLM) strategy to protect content unrelated to the target concept during fine-tuning. Furthermore, we propose a novel benchmark, Erase Concept Generator and Visual Filter (ECGVF), aim at provide a more rigorous and comprehensive foundation for evaluating concept erasure in AR models. Specifically, we first employ structured templates across diverse large language models (LLMs) to pre-generate a large-scale corpus of target-replacement concept prompt pairs. Subsequently, we generate images from these prompts and subject them to rigorous filtering via a visual classifier to ensure concept fidelity and alignment. Extensive experimental results conducted on the ECGVF benchmark with the AR model Janus-Pro demonstrate that EAR achieves marked improvements in both erasure effectiveness and model utility preservation. Code is available at: https://github.com/immc-lab/ear/
Hyper-3DG: Text-to-3D Gaussian Generation via Hypergraph
Text-to-3D generation represents an exciting field that has seen rapid advancements, facilitating the transformation of textual descriptions into detailed 3D models. However, current progress often neglects the intricate high-order correlation of geometry and texture within 3D objects, leading to challenges such as over-smoothness, over-saturation and the Janus problem. In this work, we propose a method named ``3D Gaussian Generation via Hypergraph (Hyper-3DG)'', designed to capture the sophisticated high-order correlations present within 3D objects. Our framework is anchored by a well-established mainflow and an essential module, named ``Geometry and Texture Hypergraph Refiner (HGRefiner)''. This module not only refines the representation of 3D Gaussians but also accelerates the update process of these 3D Gaussians by conducting the Patch-3DGS Hypergraph Learning on both explicit attributes and latent visual features. Our framework allows for the production of finely generated 3D objects within a cohesive optimization, effectively circumventing degradation. Extensive experimentation has shown that our proposed method significantly enhances the quality of 3D generation while incurring no additional computational overhead for the underlying framework. (Project code: https://github.com/yjhboy/Hyper3DG)
T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
Taming Mode Collapse in Score Distillation for Text-to-3D Generation
Despite the remarkable performance of score distillation in text-to-3D generation, such techniques notoriously suffer from view inconsistency issues, also known as "Janus" artifact, where the generated objects fake each view with multiple front faces. Although empirically effective methods have approached this problem via score debiasing or prompt engineering, a more rigorous perspective to explain and tackle this problem remains elusive. In this paper, we reveal that the existing score distillation-based text-to-3D generation frameworks degenerate to maximal likelihood seeking on each view independently and thus suffer from the mode collapse problem, manifesting as the Janus artifact in practice. To tame mode collapse, we improve score distillation by re-establishing in entropy term in the corresponding variational objective, which is applied to the distribution of rendered images. Maximizing the entropy encourages diversity among different views in generated 3D assets, thereby mitigating the Janus problem. Based on this new objective, we derive a new update rule for 3D score distillation, dubbed Entropic Score Distillation (ESD). We theoretically reveal that ESD can be simplified and implemented by just adopting the classifier-free guidance trick upon variational score distillation. Although embarrassingly straightforward, our extensive experiments successfully demonstrate that ESD can be an effective treatment for Janus artifacts in score distillation.
Geometry-Aware Score Distillation via 3D Consistent Noising and Gradient Consistency Modeling
Score distillation sampling (SDS), the methodology in which the score from pretrained 2D diffusion models is distilled into 3D representation, has recently brought significant advancements in text-to-3D generation task. However, this approach is still confronted with critical geometric inconsistency problems such as the Janus problem. Starting from a hypothesis that such inconsistency problems may be induced by multiview inconsistencies between 2D scores predicted from various viewpoints, we introduce GSD, a simple and general plug-and-play framework for incorporating 3D consistency and therefore geometry awareness into the SDS process. Our methodology is composed of three components: 3D consistent noising, designed to produce 3D consistent noise maps that perfectly follow the standard Gaussian distribution, geometry-based gradient warping for identifying correspondences between predicted gradients of different viewpoints, and novel gradient consistency loss to optimize the scene geometry toward producing more consistent gradients. We demonstrate that our method significantly improves performance, successfully addressing the geometric inconsistency problems in text-to-3D generation task with minimal computation cost and being compatible with existing score distillation-based models. Our project page is available at https://ku-cvlab.github.io/GSD/.
GeoDream: Disentangling 2D and Geometric Priors for High-Fidelity and Consistent 3D Generation
Text-to-3D generation by distilling pretrained large-scale text-to-image diffusion models has shown great promise but still suffers from inconsistent 3D geometric structures (Janus problems) and severe artifacts. The aforementioned problems mainly stem from 2D diffusion models lacking 3D awareness during the lifting. In this work, we present GeoDream, a novel method that incorporates explicit generalized 3D priors with 2D diffusion priors to enhance the capability of obtaining unambiguous 3D consistent geometric structures without sacrificing diversity or fidelity. Specifically, we first utilize a multi-view diffusion model to generate posed images and then construct cost volume from the predicted image, which serves as native 3D geometric priors, ensuring spatial consistency in 3D space. Subsequently, we further propose to harness 3D geometric priors to unlock the great potential of 3D awareness in 2D diffusion priors via a disentangled design. Notably, disentangling 2D and 3D priors allows us to refine 3D geometric priors further. We justify that the refined 3D geometric priors aid in the 3D-aware capability of 2D diffusion priors, which in turn provides superior guidance for the refinement of 3D geometric priors. Our numerical and visual comparisons demonstrate that GeoDream generates more 3D consistent textured meshes with high-resolution realistic renderings (i.e., 1024 times 1024) and adheres more closely to semantic coherence.
ReXVQA: A Large-scale Visual Question Answering Benchmark for Generalist Chest X-ray Understanding
We present ReXVQA, the largest and most comprehensive benchmark for visual question answering (VQA) in chest radiology, comprising approximately 696,000 questions paired with 160,000 chest X-rays studies across training, validation, and test sets. Unlike prior efforts that rely heavily on template based queries, ReXVQA introduces a diverse and clinically authentic task suite reflecting five core radiological reasoning skills: presence assessment, location analysis, negation detection, differential diagnosis, and geometric reasoning. We evaluate eight state-of-the-art multimodal large language models, including MedGemma-4B-it, Qwen2.5-VL, Janus-Pro-7B, and Eagle2-9B. The best-performing model (MedGemma) achieves 83.24% overall accuracy. To bridge the gap between AI performance and clinical expertise, we conducted a comprehensive human reader study involving 3 radiology residents on 200 randomly sampled cases. Our evaluation demonstrates that MedGemma achieved superior performance (83.84% accuracy) compared to human readers (best radiology resident: 77.27%), representing a significant milestone where AI performance exceeds expert human evaluation on chest X-ray interpretation. The reader study reveals distinct performance patterns between AI models and human experts, with strong inter-reader agreement among radiologists while showing more variable agreement patterns between human readers and AI models. ReXVQA establishes a new standard for evaluating generalist radiological AI systems, offering public leaderboards, fine-grained evaluation splits, structured explanations, and category-level breakdowns. This benchmark lays the foundation for next-generation AI systems capable of mimicking expert-level clinical reasoning beyond narrow pathology classification. Our dataset will be open-sourced at https://huggingface.co/datasets/rajpurkarlab/ReXVQA
A Survey of Safety on Large Vision-Language Models: Attacks, Defenses and Evaluations
With the rapid advancement of Large Vision-Language Models (LVLMs), ensuring their safety has emerged as a crucial area of research. This survey provides a comprehensive analysis of LVLM safety, covering key aspects such as attacks, defenses, and evaluation methods. We introduce a unified framework that integrates these interrelated components, offering a holistic perspective on the vulnerabilities of LVLMs and the corresponding mitigation strategies. Through an analysis of the LVLM lifecycle, we introduce a classification framework that distinguishes between inference and training phases, with further subcategories to provide deeper insights. Furthermore, we highlight limitations in existing research and outline future directions aimed at strengthening the robustness of LVLMs. As part of our research, we conduct a set of safety evaluations on the latest LVLM, Deepseek Janus-Pro, and provide a theoretical analysis of the results. Our findings provide strategic recommendations for advancing LVLM safety and ensuring their secure and reliable deployment in high-stakes, real-world applications. This survey aims to serve as a cornerstone for future research, facilitating the development of models that not only push the boundaries of multimodal intelligence but also adhere to the highest standards of security and ethical integrity. Furthermore, to aid the growing research in this field, we have created a public repository to continuously compile and update the latest work on LVLM safety: https://github.com/XuankunRong/Awesome-LVLM-Safety .
Instant3D: Fast Text-to-3D with Sparse-View Generation and Large Reconstruction Model
Text-to-3D with diffusion models have achieved remarkable progress in recent years. However, existing methods either rely on score distillation-based optimization which suffer from slow inference, low diversity and Janus problems, or are feed-forward methods that generate low quality results due to the scarcity of 3D training data. In this paper, we propose Instant3D, a novel method that generates high-quality and diverse 3D assets from text prompts in a feed-forward manner. We adopt a two-stage paradigm, which first generates a sparse set of four structured and consistent views from text in one shot with a fine-tuned 2D text-to-image diffusion model, and then directly regresses the NeRF from the generated images with a novel transformer-based sparse-view reconstructor. Through extensive experiments, we demonstrate that our method can generate high-quality, diverse and Janus-free 3D assets within 20 seconds, which is two order of magnitude faster than previous optimization-based methods that can take 1 to 10 hours. Our project webpage: https://jiahao.ai/instant3d/.
FlexiTex: Enhancing Texture Generation with Visual Guidance
Recent texture generation methods achieve impressive results due to the powerful generative prior they leverage from large-scale text-to-image diffusion models. However, abstract textual prompts are limited in providing global textural or shape information, which results in the texture generation methods producing blurry or inconsistent patterns. To tackle this, we present FlexiTex, embedding rich information via visual guidance to generate a high-quality texture. The core of FlexiTex is the Visual Guidance Enhancement module, which incorporates more specific information from visual guidance to reduce ambiguity in the text prompt and preserve high-frequency details. To further enhance the visual guidance, we introduce a Direction-Aware Adaptation module that automatically designs direction prompts based on different camera poses, avoiding the Janus problem and maintaining semantically global consistency. Benefiting from the visual guidance, FlexiTex produces quantitatively and qualitatively sound results, demonstrating its potential to advance texture generation for real-world applications.
DreamTime: An Improved Optimization Strategy for Text-to-3D Content Creation
Text-to-image diffusion models pre-trained on billions of image-text pairs have recently enabled text-to-3D content creation by optimizing a randomly initialized Neural Radiance Fields (NeRF) with score distillation. However, the resultant 3D models exhibit two limitations: (a) quality concerns such as saturated color and the Janus problem; (b) extremely low diversity comparing to text-guided image synthesis. In this paper, we show that the conflict between NeRF optimization process and uniform timestep sampling in score distillation is the main reason for these limitations. To resolve this conflict, we propose to prioritize timestep sampling with monotonically non-increasing functions, which aligns NeRF optimization with the sampling process of diffusion model. Extensive experiments show that our simple redesign significantly improves text-to-3D content creation with higher quality and diversity.
DreamAvatar: Text-and-Shape Guided 3D Human Avatar Generation via Diffusion Models
We present DreamAvatar, a text-and-shape guided framework for generating high-quality 3D human avatars with controllable poses. While encouraging results have been reported by recent methods on text-guided 3D common object generation, generating high-quality human avatars remains an open challenge due to the complexity of the human body's shape, pose, and appearance. We propose DreamAvatar to tackle this challenge, which utilizes a trainable NeRF for predicting density and color for 3D points and pretrained text-to-image diffusion models for providing 2D self-supervision. Specifically, we leverage the SMPL model to provide shape and pose guidance for the generation. We introduce a dual-observation-space design that involves the joint optimization of a canonical space and a posed space that are related by a learnable deformation field. This facilitates the generation of more complete textures and geometry faithful to the target pose. We also jointly optimize the losses computed from the full body and from the zoomed-in 3D head to alleviate the common multi-face ''Janus'' problem and improve facial details in the generated avatars. Extensive evaluations demonstrate that DreamAvatar significantly outperforms existing methods, establishing a new state-of-the-art for text-and-shape guided 3D human avatar generation.
DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets (represented by Neural Radiance Fields) from text prompts. Unlike recent 3D generative models that rely on clean and well-aligned 3D data, limiting them to single or few-class generation, our model is directly trained on extensive noisy and unaligned `in-the-wild' 3D assets, mitigating the key challenge (i.e., data scarcity) in large-scale 3D generation. In particular, DIRECT-3D is a tri-plane diffusion model that integrates two innovations: 1) A novel learning framework where noisy data are filtered and aligned automatically during the training process. Specifically, after an initial warm-up phase using a small set of clean data, an iterative optimization is introduced in the diffusion process to explicitly estimate the 3D pose of objects and select beneficial data based on conditional density. 2) An efficient 3D representation that is achieved by disentangling object geometry and color features with two separate conditional diffusion models that are optimized hierarchically. Given a prompt input, our model generates high-quality, high-resolution, realistic, and complex 3D objects with accurate geometric details in seconds. We achieve state-of-the-art performance in both single-class generation and text-to-3D generation. We also demonstrate that DIRECT-3D can serve as a useful 3D geometric prior of objects, for example to alleviate the well-known Janus problem in 2D-lifting methods such as DreamFusion. The code and models are available for research purposes at: https://github.com/qihao067/direct3d.
EG4D: Explicit Generation of 4D Object without Score Distillation
In recent years, the increasing demand for dynamic 3D assets in design and gaming applications has given rise to powerful generative pipelines capable of synthesizing high-quality 4D objects. Previous methods generally rely on score distillation sampling (SDS) algorithm to infer the unseen views and motion of 4D objects, thus leading to unsatisfactory results with defects like over-saturation and Janus problem. Therefore, inspired by recent progress of video diffusion models, we propose to optimize a 4D representation by explicitly generating multi-view videos from one input image. However, it is far from trivial to handle practical challenges faced by such a pipeline, including dramatic temporal inconsistency, inter-frame geometry and texture diversity, and semantic defects brought by video generation results. To address these issues, we propose DG4D, a novel multi-stage framework that generates high-quality and consistent 4D assets without score distillation. Specifically, collaborative techniques and solutions are developed, including an attention injection strategy to synthesize temporal-consistent multi-view videos, a robust and efficient dynamic reconstruction method based on Gaussian Splatting, and a refinement stage with diffusion prior for semantic restoration. The qualitative results and user preference study demonstrate that our framework outperforms the baselines in generation quality by a considerable margin. Code will be released at https://github.com/jasongzy/EG4D.
PLA4D: Pixel-Level Alignments for Text-to-4D Gaussian Splatting
As text-conditioned diffusion models (DMs) achieve breakthroughs in image, video, and 3D generation, the research community's focus has shifted to the more challenging task of text-to-4D synthesis, which introduces a temporal dimension to generate dynamic 3D objects. In this context, we identify Score Distillation Sampling (SDS), a widely used technique for text-to-3D synthesis, as a significant hindrance to text-to-4D performance due to its Janus-faced and texture-unrealistic problems coupled with high computational costs. In this paper, we propose Pixel-Level Alignments for Text-to-4D Gaussian Splatting (PLA4D), a novel method that utilizes text-to-video frames as explicit pixel alignment targets to generate static 3D objects and inject motion into them. Specifically, we introduce Focal Alignment to calibrate camera poses for rendering and GS-Mesh Contrastive Learning to distill geometry priors from rendered image contrasts at the pixel level. Additionally, we develop Motion Alignment using a deformation network to drive changes in Gaussians and implement Reference Refinement for smooth 4D object surfaces. These techniques enable 4D Gaussian Splatting to align geometry, texture, and motion with generated videos at the pixel level. Compared to previous methods, PLA4D produces synthesized outputs with better texture details in less time and effectively mitigates the Janus-faced problem. PLA4D is fully implemented using open-source models, offering an accessible, user-friendly, and promising direction for 4D digital content creation. Our project page: https://github.com/MiaoQiaowei/PLA4D.github.io{https://github.com/MiaoQiaowei/PLA4D.github.io}.
Progressive Open Space Expansion for Open-Set Model Attribution
Despite the remarkable progress in generative technology, the Janus-faced issues of intellectual property protection and malicious content supervision have arisen. Efforts have been paid to manage synthetic images by attributing them to a set of potential source models. However, the closed-set classification setting limits the application in real-world scenarios for handling contents generated by arbitrary models. In this study, we focus on a challenging task, namely Open-Set Model Attribution (OSMA), to simultaneously attribute images to known models and identify those from unknown ones. Compared to existing open-set recognition (OSR) tasks focusing on semantic novelty, OSMA is more challenging as the distinction between images from known and unknown models may only lie in visually imperceptible traces. To this end, we propose a Progressive Open Space Expansion (POSE) solution, which simulates open-set samples that maintain the same semantics as closed-set samples but embedded with different imperceptible traces. Guided by a diversity constraint, the open space is simulated progressively by a set of lightweight augmentation models. We consider three real-world scenarios and construct an OSMA benchmark dataset, including unknown models trained with different random seeds, architectures, and datasets from known ones. Extensive experiments on the dataset demonstrate POSE is superior to both existing model attribution methods and off-the-shelf OSR methods.
Janus: Decoupling Visual Encoding for Unified Multimodal Understanding and Generation
In this paper, we introduce Janus, an autoregressive framework that unifies multimodal understanding and generation. Prior research often relies on a single visual encoder for both tasks, such as Chameleon. However, due to the differing levels of information granularity required by multimodal understanding and generation, this approach can lead to suboptimal performance, particularly in multimodal understanding. To address this issue, we decouple visual encoding into separate pathways, while still leveraging a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder's roles in understanding and generation, but also enhances the framework's flexibility. For instance, both the multimodal understanding and generation components can independently select their most suitable encoding methods. Experiments show that Janus surpasses previous unified model and matches or exceeds the performance of task-specific models. The simplicity, high flexibility, and effectiveness of Janus make it a strong candidate for next-generation unified multimodal models.
Visual Reasoning Evaluation of Grok, Deepseek Janus, Gemini, Qwen, Mistral, and ChatGPT
Traditional evaluations of multimodal large language models (LLMs) have been limited by their focus on single-image reasoning, failing to assess crucial aspects like contextual understanding, reasoning stability, and uncertainty calibration. This study addresses these limitations by introducing a novel benchmark that integrates multi-image reasoning tasks with rejection-based evaluation and positional bias detection. To evaluate these dimensions, we further introduce entropy as a novel metric for quantifying reasoning consistency across reordered answer variants. We applied this benchmark to assess Grok 3, ChatGPT-4o, ChatGPT-o1, Gemini 2.0 Flash Experimental, DeepSeek Janus models, Qwen2.5-VL-72B-Instruct, QVQ-72B-Preview, and Pixtral 12B across eight visual reasoning tasks, including difference spotting and diagram interpretation. Our findings reveal ChatGPT-o1 leading in overall accuracy (82.5\%) and rejection accuracy (70.0\%), closely followed by Gemini 2.0 Flash Experimental (70.8\%). QVQ-72B-Preview demonstrated superior rejection accuracy (85.5\%). Notably, Pixtral 12B (51.7\%) showed promise in specific domains, while Janus models exhibited challenges in bias and uncertainty calibration, reflected in low rejection accuracies and high entropy scores. High entropy scores in Janus models (Janus 7B: 0.8392, Janus 1B: 0.787) underscore their susceptibility to positional bias and unstable reasoning, contrasting with the low entropy and robust reasoning of ChatGPT models. The study further demonstrates that model size is not the sole determinant of performance, as evidenced by Grok 3 underperformance despite its substantial parameter count. By employing multi-image contexts, rejection mechanisms, and entropy-based consistency metrics, this benchmark sets a new standard for evaluating multimodal LLMs, enabling a more robust and reliable assessment of next-generation AI systems.
PAniC-3D: Stylized Single-view 3D Reconstruction from Portraits of Anime Characters
We propose PAniC-3D, a system to reconstruct stylized 3D character heads directly from illustrated (p)ortraits of (ani)me (c)haracters. Our anime-style domain poses unique challenges to single-view reconstruction; compared to natural images of human heads, character portrait illustrations have hair and accessories with more complex and diverse geometry, and are shaded with non-photorealistic contour lines. In addition, there is a lack of both 3D model and portrait illustration data suitable to train and evaluate this ambiguous stylized reconstruction task. Facing these challenges, our proposed PAniC-3D architecture crosses the illustration-to-3D domain gap with a line-filling model, and represents sophisticated geometries with a volumetric radiance field. We train our system with two large new datasets (11.2k Vroid 3D models, 1k Vtuber portrait illustrations), and evaluate on a novel AnimeRecon benchmark of illustration-to-3D pairs. PAniC-3D significantly outperforms baseline methods, and provides data to establish the task of stylized reconstruction from portrait illustrations.
Harmonizing Visual Representations for Unified Multimodal Understanding and Generation
Unifying visual understanding and generation within a single multimodal framework remains a significant challenge, as the two inherently heterogeneous tasks require representations at different levels of granularity. Current approaches that utilize vector quantization (VQ) or variational autoencoders (VAE) for unified visual representation prioritize intrinsic imagery features over semantics, compromising understanding performance. In this work, we take inspiration from masked image modelling (MIM) that learns rich semantics via a mask-and-reconstruct pre-training and its successful extension to masked autoregressive (MAR) image generation. A preliminary study on the MAR encoder's representation reveals exceptional linear probing accuracy and precise feature response to visual concepts, which indicates MAR's potential for visual understanding tasks beyond its original generation role. Based on these insights, we present Harmon, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder. Through a three-stage training procedure that progressively optimizes understanding and generation capabilities, Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks while matching the performance of methods with dedicated semantic encoders (e.g., Janus) on image understanding benchmarks. Our code and models will be available at https://github.com/wusize/Harmon.
Aligning to Thousands of Preferences via System Message Generalization
Although humans inherently have diverse values, current large language model (LLM) alignment methods often assume that aligning LLMs with the general public's preferences is optimal. A major challenge in adopting a more individualized approach to LLM alignment is its lack of scalability, as it involves repeatedly acquiring preference data and training new reward models and LLMs for each individual's preferences. To address these challenges, we propose a new paradigm where users specify what they value most within the system message, steering the LLM's generation behavior to better align with the user's intentions. However, a naive application of such an approach is non-trivial since LLMs are typically trained on a uniform system message (e.g., "You are a helpful assistant") which limits their ability to generalize to diverse, unseen system messages. To improve this generalization, we create the Multifaceted Collection, a preference dataset with 192k combinations of values beyond generic helpfulness and harmlessness, spanning 65k user instructions. Using this dataset, we train a 7B LLM called Janus and test it on 921 prompts from 5 benchmarks (AlpacaEval 2.0, FLASK, Koala, MT-Bench, and Self-Instruct) by adding various unseen system messages that reflect user preferences. Janus achieves tie+win rate of 75.2%, 72.4%, and 66.4% against Mistral 7B Instruct v0.2, GPT-3.5 Turbo, and GPT-4, respectively. Unexpectedly, on three benchmarks focused on response helpfulness (AlpacaEval 2.0, MT-Bench, Arena Hard Auto v0.1), Janus also outperforms LLaMA 3 8B Instruct by a +4.0%, +0.1%, +3.0% margin, underscoring that training with a vast array of system messages could also enhance alignment to the general public's preference as well. Our code, dataset, benchmark, and models are available at https://github.com/kaistAI/Janus.
Sherpa3D: Boosting High-Fidelity Text-to-3D Generation via Coarse 3D Prior
Recently, 3D content creation from text prompts has demonstrated remarkable progress by utilizing 2D and 3D diffusion models. While 3D diffusion models ensure great multi-view consistency, their ability to generate high-quality and diverse 3D assets is hindered by the limited 3D data. In contrast, 2D diffusion models find a distillation approach that achieves excellent generalization and rich details without any 3D data. However, 2D lifting methods suffer from inherent view-agnostic ambiguity thereby leading to serious multi-face Janus issues, where text prompts fail to provide sufficient guidance to learn coherent 3D results. Instead of retraining a costly viewpoint-aware model, we study how to fully exploit easily accessible coarse 3D knowledge to enhance the prompts and guide 2D lifting optimization for refinement. In this paper, we propose Sherpa3D, a new text-to-3D framework that achieves high-fidelity, generalizability, and geometric consistency simultaneously. Specifically, we design a pair of guiding strategies derived from the coarse 3D prior generated by the 3D diffusion model: a structural guidance for geometric fidelity and a semantic guidance for 3D coherence. Employing the two types of guidance, the 2D diffusion model enriches the 3D content with diversified and high-quality results. Extensive experiments show the superiority of our Sherpa3D over the state-of-the-art text-to-3D methods in terms of quality and 3D consistency.
CAD: Photorealistic 3D Generation via Adversarial Distillation
The increased demand for 3D data in AR/VR, robotics and gaming applications, gave rise to powerful generative pipelines capable of synthesizing high-quality 3D objects. Most of these models rely on the Score Distillation Sampling (SDS) algorithm to optimize a 3D representation such that the rendered image maintains a high likelihood as evaluated by a pre-trained diffusion model. However, finding a correct mode in the high-dimensional distribution produced by the diffusion model is challenging and often leads to issues such as over-saturation, over-smoothing, and Janus-like artifacts. In this paper, we propose a novel learning paradigm for 3D synthesis that utilizes pre-trained diffusion models. Instead of focusing on mode-seeking, our method directly models the distribution discrepancy between multi-view renderings and diffusion priors in an adversarial manner, which unlocks the generation of high-fidelity and photorealistic 3D content, conditioned on a single image and prompt. Moreover, by harnessing the latent space of GANs and expressive diffusion model priors, our method facilitates a wide variety of 3D applications including single-view reconstruction, high diversity generation and continuous 3D interpolation in the open domain. The experiments demonstrate the superiority of our pipeline compared to previous works in terms of generation quality and diversity.
Fusion of ML with numerical simulation for optimized propeller design
In computer-aided engineering design, the goal of a designer is to find an optimal design on a given requirement using the numerical simulator in loop with an optimization method. In this design optimization process, a good design optimization process is one that can reduce the time from inception to design. In this work, we take a class of design problem, that is computationally cheap to evaluate but has high dimensional design space. In such cases, traditional surrogate-based optimization does not offer any benefits. In this work, we propose an alternative way to use ML model to surrogate the design process that formulates the search problem as an inverse problem and can save time by finding the optimal design or at least a good initial seed design for optimization. By using this trained surrogate model with the traditional optimization method, we can get the best of both worlds. We call this as Surrogate Assisted Optimization (SAO)- a hybrid approach by mixing ML surrogate with the traditional optimization method. Empirical evaluations of propeller design problems show that a better efficient design can be found in fewer evaluations using SAO.
Observation of the open-charm tetraquark state $T_{cs 0}^{*}(2870)^0$ in the $B^- \rightarrow D^- D^0 K_\mathrm{S}^0$ decay
An amplitude analysis of B^-rightarrow D^- D^0 K_S^0 decays is performed using proton-proton collision data, corresponding to an integrated luminosity of 9,fb^{-1}, collected with the LHCb detector at center-of-mass energies of 7, 8, and 13,Tekern -0.1em V. A resonant structure of spin-parity 0^+ is observed in the D^0 K_S^0 invariant-mass spectrum with a significance of 5.3,sigma. The mass and width of the state, modeled with a Breit-Wigner lineshape, are determined to be 2883pm11pm6,Mekern -0.1em V!/c^2 and 87_{-47}^{+22}pm6,Mekern -0.1em V respectively, where the first uncertainties are statistical and the second systematic. These properties and the quark content are consistent with those of the open-charm tetraquark state T_{cs 0}^{*}(2870)^0 observed previously in the D^+ K^- final state of the B^-rightarrow D^- D^+ K^- decay. This result confirms the existence of the T_{cs 0}^{*}(2870)^0 state in a new decay mode. The T_{cs1}^{*}(2900)^0 state, reported in the B^-rightarrow D^- D^+ K^- decay, is also searched for in the D^0 K_S^0 invariant-mass spectrum of the B^- rightarrow D^- D^0 K_S^0 decay, without finding evidence for it.
AtP*: An efficient and scalable method for localizing LLM behaviour to components
Activation Patching is a method of directly computing causal attributions of behavior to model components. However, applying it exhaustively requires a sweep with cost scaling linearly in the number of model components, which can be prohibitively expensive for SoTA Large Language Models (LLMs). We investigate Attribution Patching (AtP), a fast gradient-based approximation to Activation Patching and find two classes of failure modes of AtP which lead to significant false negatives. We propose a variant of AtP called AtP*, with two changes to address these failure modes while retaining scalability. We present the first systematic study of AtP and alternative methods for faster activation patching and show that AtP significantly outperforms all other investigated methods, with AtP* providing further significant improvement. Finally, we provide a method to bound the probability of remaining false negatives of AtP* estimates.
Can Biases in ImageNet Models Explain Generalization?
The robust generalization of models to rare, in-distribution (ID) samples drawn from the long tail of the training distribution and to out-of-training-distribution (OOD) samples is one of the major challenges of current deep learning methods. For image classification, this manifests in the existence of adversarial attacks, the performance drops on distorted images, and a lack of generalization to concepts such as sketches. The current understanding of generalization in neural networks is very limited, but some biases that differentiate models from human vision have been identified and might be causing these limitations. Consequently, several attempts with varying success have been made to reduce these biases during training to improve generalization. We take a step back and sanity-check these attempts. Fixing the architecture to the well-established ResNet-50, we perform a large-scale study on 48 ImageNet models obtained via different training methods to understand how and if these biases - including shape bias, spectral biases, and critical bands - interact with generalization. Our extensive study results reveal that contrary to previous findings, these biases are insufficient to accurately predict the generalization of a model holistically. We provide access to all checkpoints and evaluation code at https://github.com/paulgavrikov/biases_vs_generalization
Tracr: Compiled Transformers as a Laboratory for Interpretability
We show how to "compile" human-readable programs into standard decoder-only transformer models. Our compiler, Tracr, generates models with known structure. This structure can be used to design experiments. For example, we use it to study "superposition" in transformers that execute multi-step algorithms. Additionally, the known structure of Tracr-compiled models can serve as ground-truth for evaluating interpretability methods. Commonly, because the "programs" learned by transformers are unknown it is unclear whether an interpretation succeeded. We demonstrate our approach by implementing and examining programs including computing token frequencies, sorting, and parenthesis checking. We provide an open-source implementation of Tracr at https://github.com/google-deepmind/tracr.
Adversarial Robustness through the Lens of Convolutional Filters
Deep learning models are intrinsically sensitive to distribution shifts in the input data. In particular, small, barely perceivable perturbations to the input data can force models to make wrong predictions with high confidence. An common defense mechanism is regularization through adversarial training which injects worst-case perturbations back into training to strengthen the decision boundaries, and to reduce overfitting. In this context, we perform an investigation of 3x3 convolution filters that form in adversarially-trained models. Filters are extracted from 71 public models of the linf-RobustBench CIFAR-10/100 and ImageNet1k leaderboard and compared to filters extracted from models built on the same architectures but trained without robust regularization. We observe that adversarially-robust models appear to form more diverse, less sparse, and more orthogonal convolution filters than their normal counterparts. The largest differences between robust and normal models are found in the deepest layers, and the very first convolution layer, which consistently and predominantly forms filters that can partially eliminate perturbations, irrespective of the architecture. Data & Project website: https://github.com/paulgavrikov/cvpr22w_RobustnessThroughTheLens
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
Currently, many theoretical as well as practically relevant questions towards the transferability and robustness of Convolutional Neural Networks (CNNs) remain unsolved. While ongoing research efforts are engaging these problems from various angles, in most computer vision related cases these approaches can be generalized to investigations of the effects of distribution shifts in image data. In this context, we propose to study the shifts in the learned weights of trained CNN models. Here we focus on the properties of the distributions of dominantly used 3x3 convolution filter kernels. We collected and publicly provide a dataset with over 1.4 billion filters from hundreds of trained CNNs, using a wide range of datasets, architectures, and vision tasks. In a first use case of the proposed dataset, we can show highly relevant properties of many publicly available pre-trained models for practical applications: I) We analyze distribution shifts (or the lack thereof) between trained filters along different axes of meta-parameters, like visual category of the dataset, task, architecture, or layer depth. Based on these results, we conclude that model pre-training can succeed on arbitrary datasets if they meet size and variance conditions. II) We show that many pre-trained models contain degenerated filters which make them less robust and less suitable for fine-tuning on target applications. Data & Project website: https://github.com/paulgavrikov/cnn-filter-db
On the Practicality of Deterministic Epistemic Uncertainty
A set of novel approaches for estimating epistemic uncertainty in deep neural networks with a single forward pass has recently emerged as a valid alternative to Bayesian Neural Networks. On the premise of informative representations, these deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution (OOD) data while adding negligible computational costs at inference time. However, it remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications - both prerequisites for their practical deployment. To this end, we first provide a taxonomy of DUMs, and evaluate their calibration under continuous distributional shifts. Then, we extend them to semantic segmentation. We find that, while DUMs scale to realistic vision tasks and perform well on OOD detection, the practicality of current methods is undermined by poor calibration under distributional shifts.
Generalized Interpolating Discrete Diffusion
While state-of-the-art language models achieve impressive results through next-token prediction, they have inherent limitations such as the inability to revise already generated tokens. This has prompted exploration of alternative approaches such as discrete diffusion. However, masked diffusion, which has emerged as a popular choice due to its simplicity and effectiveness, reintroduces this inability to revise words. To overcome this, we generalize masked diffusion and derive the theoretical backbone of a family of general interpolating discrete diffusion (GIDD) processes offering greater flexibility in the design of the noising processes. Leveraging a novel diffusion ELBO, we achieve compute-matched state-of-the-art performance in diffusion language modeling. Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise, leading to improved sample quality and unlocking the ability for the model to correct its own mistakes, an area where autoregressive models notoriously have struggled. Our code and models are open-source: https://github.com/dvruette/gidd/
Improving Adversarial Data Collection by Supporting Annotators: Lessons from GAHD, a German Hate Speech Dataset
Hate speech detection models are only as good as the data they are trained on. Datasets sourced from social media suffer from systematic gaps and biases, leading to unreliable models with simplistic decision boundaries. Adversarial datasets, collected by exploiting model weaknesses, promise to fix this problem. However, adversarial data collection can be slow and costly, and individual annotators have limited creativity. In this paper, we introduce GAHD, a new German Adversarial Hate speech Dataset comprising ca.\ 11k examples. During data collection, we explore new strategies for supporting annotators, to create more diverse adversarial examples more efficiently and provide a manual analysis of annotator disagreements for each strategy. Our experiments show that the resulting dataset is challenging even for state-of-the-art hate speech detection models, and that training on GAHD clearly improves model robustness. Further, we find that mixing multiple support strategies is most advantageous. We make GAHD publicly available at https://github.com/jagol/gahd.
Robust Models are less Over-Confident
Despite the success of convolutional neural networks (CNNs) in many academic benchmarks for computer vision tasks, their application in the real-world is still facing fundamental challenges. One of these open problems is the inherent lack of robustness, unveiled by the striking effectiveness of adversarial attacks. Current attack methods are able to manipulate the network's prediction by adding specific but small amounts of noise to the input. In turn, adversarial training (AT) aims to achieve robustness against such attacks and ideally a better model generalization ability by including adversarial samples in the trainingset. However, an in-depth analysis of the resulting robust models beyond adversarial robustness is still pending. In this paper, we empirically analyze a variety of adversarially trained models that achieve high robust accuracies when facing state-of-the-art attacks and we show that AT has an interesting side-effect: it leads to models that are significantly less overconfident with their decisions, even on clean data than non-robust models. Further, our analysis of robust models shows that not only AT but also the model's building blocks (like activation functions and pooling) have a strong influence on the models' prediction confidences. Data & Project website: https://github.com/GeJulia/robustness_confidences_evaluation
MSTS: A Multimodal Safety Test Suite for Vision-Language Models
Vision-language models (VLMs), which process image and text inputs, are increasingly integrated into chat assistants and other consumer AI applications. Without proper safeguards, however, VLMs may give harmful advice (e.g. how to self-harm) or encourage unsafe behaviours (e.g. to consume drugs). Despite these clear hazards, little work so far has evaluated VLM safety and the novel risks created by multimodal inputs. To address this gap, we introduce MSTS, a Multimodal Safety Test Suite for VLMs. MSTS comprises 400 test prompts across 40 fine-grained hazard categories. Each test prompt consists of a text and an image that only in combination reveal their full unsafe meaning. With MSTS, we find clear safety issues in several open VLMs. We also find some VLMs to be safe by accident, meaning that they are safe because they fail to understand even simple test prompts. We translate MSTS into ten languages, showing non-English prompts to increase the rate of unsafe model responses. We also show models to be safer when tested with text only rather than multimodal prompts. Finally, we explore the automation of VLM safety assessments, finding even the best safety classifiers to be lacking.
PhysicsGen: Can Generative Models Learn from Images to Predict Complex Physical Relations?
The image-to-image translation abilities of generative learning models have recently made significant progress in the estimation of complex (steered) mappings between image distributions. While appearance based tasks like image in-painting or style transfer have been studied at length, we propose to investigate the potential of generative models in the context of physical simulations. Providing a dataset of 300k image-pairs and baseline evaluations for three different physical simulation tasks, we propose a benchmark to investigate the following research questions: i) are generative models able to learn complex physical relations from input-output image pairs? ii) what speedups can be achieved by replacing differential equation based simulations? While baseline evaluations of different current models show the potential for high speedups (ii), these results also show strong limitations toward the physical correctness (i). This underlines the need for new methods to enforce physical correctness. Data, baseline models and evaluation code http://www.physics-gen.org.
KLEJ: Comprehensive Benchmark for Polish Language Understanding
In recent years, a series of Transformer-based models unlocked major improvements in general natural language understanding (NLU) tasks. Such a fast pace of research would not be possible without general NLU benchmarks, which allow for a fair comparison of the proposed methods. However, such benchmarks are available only for a handful of languages. To alleviate this issue, we introduce a comprehensive multi-task benchmark for the Polish language understanding, accompanied by an online leaderboard. It consists of a diverse set of tasks, adopted from existing datasets for named entity recognition, question-answering, textual entailment, and others. We also introduce a new sentiment analysis task for the e-commerce domain, named Allegro Reviews (AR). To ensure a common evaluation scheme and promote models that generalize to different NLU tasks, the benchmark includes datasets from varying domains and applications. Additionally, we release HerBERT, a Transformer-based model trained specifically for the Polish language, which has the best average performance and obtains the best results for three out of nine tasks. Finally, we provide an extensive evaluation, including several standard baselines and recently proposed, multilingual Transformer-based models.
Explaining grokking through circuit efficiency
One of the most surprising puzzles in neural network generalisation is grokking: a network with perfect training accuracy but poor generalisation will, upon further training, transition to perfect generalisation. We propose that grokking occurs when the task admits a generalising solution and a memorising solution, where the generalising solution is slower to learn but more efficient, producing larger logits with the same parameter norm. We hypothesise that memorising circuits become more inefficient with larger training datasets while generalising circuits do not, suggesting there is a critical dataset size at which memorisation and generalisation are equally efficient. We make and confirm four novel predictions about grokking, providing significant evidence in favour of our explanation. Most strikingly, we demonstrate two novel and surprising behaviours: ungrokking, in which a network regresses from perfect to low test accuracy, and semi-grokking, in which a network shows delayed generalisation to partial rather than perfect test accuracy.
On scalable oversight with weak LLMs judging strong LLMs
Scalable oversight protocols aim to enable humans to accurately supervise superhuman AI. In this paper we study debate, where two AI's compete to convince a judge; consultancy, where a single AI tries to convince a judge that asks questions; and compare to a baseline of direct question-answering, where the judge just answers outright without the AI. We use large language models (LLMs) as both AI agents and as stand-ins for human judges, taking the judge models to be weaker than agent models. We benchmark on a diverse range of asymmetries between judges and agents, extending previous work on a single extractive QA task with information asymmetry, to also include mathematics, coding, logic and multimodal reasoning asymmetries. We find that debate outperforms consultancy across all tasks when the consultant is randomly assigned to argue for the correct/incorrect answer. Comparing debate to direct question answering, the results depend on the type of task: in extractive QA tasks with information asymmetry debate outperforms direct question answering, but in other tasks without information asymmetry the results are mixed. Previous work assigned debaters/consultants an answer to argue for. When we allow them to instead choose which answer to argue for, we find judges are less frequently convinced by the wrong answer in debate than in consultancy. Further, we find that stronger debater models increase judge accuracy, though more modestly than in previous studies.
Does Circuit Analysis Interpretability Scale? Evidence from Multiple Choice Capabilities in Chinchilla
Circuit analysis is a promising technique for understanding the internal mechanisms of language models. However, existing analyses are done in small models far from the state of the art. To address this, we present a case study of circuit analysis in the 70B Chinchilla model, aiming to test the scalability of circuit analysis. In particular, we study multiple-choice question answering, and investigate Chinchilla's capability to identify the correct answer label given knowledge of the correct answer text. We find that the existing techniques of logit attribution, attention pattern visualization, and activation patching naturally scale to Chinchilla, allowing us to identify and categorize a small set of `output nodes' (attention heads and MLPs). We further study the `correct letter' category of attention heads aiming to understand the semantics of their features, with mixed results. For normal multiple-choice question answers, we significantly compress the query, key and value subspaces of the head without loss of performance when operating on the answer labels for multiple-choice questions, and we show that the query and key subspaces represent an `Nth item in an enumeration' feature to at least some extent. However, when we attempt to use this explanation to understand the heads' behaviour on a more general distribution including randomized answer labels, we find that it is only a partial explanation, suggesting there is more to learn about the operation of `correct letter' heads on multiple choice question answering.
Beware of Aliases -- Signal Preservation is Crucial for Robust Image Restoration
Image restoration networks are usually comprised of an encoder and a decoder, responsible for aggregating image content from noisy, distorted data and to restore clean, undistorted images, respectively. Data aggregation as well as high-resolution image generation both usually come at the risk of involving aliases, i.e.~standard architectures put their ability to reconstruct the model input in jeopardy to reach high PSNR values on validation data. The price to be paid is low model robustness. In this work, we show that simply providing alias-free paths in state-of-the-art reconstruction transformers supports improved model robustness at low costs on the restoration performance. We do so by proposing BOA-Restormer, a transformer-based image restoration model that executes downsampling and upsampling operations partly in the frequency domain to ensure alias-free paths along the entire model while potentially preserving all relevant high-frequency information.
On the Interplay of Convolutional Padding and Adversarial Robustness
It is common practice to apply padding prior to convolution operations to preserve the resolution of feature-maps in Convolutional Neural Networks (CNN). While many alternatives exist, this is often achieved by adding a border of zeros around the inputs. In this work, we show that adversarial attacks often result in perturbation anomalies at the image boundaries, which are the areas where padding is used. Consequently, we aim to provide an analysis of the interplay between padding and adversarial attacks and seek an answer to the question of how different padding modes (or their absence) affect adversarial robustness in various scenarios.
An Extended Study of Human-like Behavior under Adversarial Training
Neural networks have a number of shortcomings. Amongst the severest ones is the sensitivity to distribution shifts which allows models to be easily fooled into wrong predictions by small perturbations to inputs that are often imperceivable to humans and do not have to carry semantic meaning. Adversarial training poses a partial solution to address this issue by training models on worst-case perturbations. Yet, recent work has also pointed out that the reasoning in neural networks is different from humans. Humans identify objects by shape, while neural nets mainly employ texture cues. Exemplarily, a model trained on photographs will likely fail to generalize to datasets containing sketches. Interestingly, it was also shown that adversarial training seems to favorably increase the shift toward shape bias. In this work, we revisit this observation and provide an extensive analysis of this effect on various architectures, the common ell_2- and ell_infty-training, and Transformer-based models. Further, we provide a possible explanation for this phenomenon from a frequency perspective.
Does Medical Imaging learn different Convolution Filters?
Recent work has investigated the distributions of learned convolution filters through a large-scale study containing hundreds of heterogeneous image models. Surprisingly, on average, the distributions only show minor drifts in comparisons of various studied dimensions including the learned task, image domain, or dataset. However, among the studied image domains, medical imaging models appeared to show significant outliers through "spikey" distributions, and, therefore, learn clusters of highly specific filters different from other domains. Following this observation, we study the collected medical imaging models in more detail. We show that instead of fundamental differences, the outliers are due to specific processing in some architectures. Quite the contrary, for standardized architectures, we find that models trained on medical data do not significantly differ in their filter distributions from similar architectures trained on data from other domains. Our conclusions reinforce previous hypotheses stating that pre-training of imaging models can be done with any kind of diverse image data.
Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders
Sparse autoencoders (SAEs) are a promising unsupervised approach for identifying causally relevant and interpretable linear features in a language model's (LM) activations. To be useful for downstream tasks, SAEs need to decompose LM activations faithfully; yet to be interpretable the decomposition must be sparse -- two objectives that are in tension. In this paper, we introduce JumpReLU SAEs, which achieve state-of-the-art reconstruction fidelity at a given sparsity level on Gemma 2 9B activations, compared to other recent advances such as Gated and TopK SAEs. We also show that this improvement does not come at the cost of interpretability through manual and automated interpretability studies. JumpReLU SAEs are a simple modification of vanilla (ReLU) SAEs -- where we replace the ReLU with a discontinuous JumpReLU activation function -- and are similarly efficient to train and run. By utilising straight-through-estimators (STEs) in a principled manner, we show how it is possible to train JumpReLU SAEs effectively despite the discontinuous JumpReLU function introduced in the SAE's forward pass. Similarly, we use STEs to directly train L0 to be sparse, instead of training on proxies such as L1, avoiding problems like shrinkage.
Detecting Images Generated by Deep Diffusion Models using their Local Intrinsic Dimensionality
Diffusion models recently have been successfully applied for the visual synthesis of strikingly realistic appearing images. This raises strong concerns about their potential for malicious purposes. In this paper, we propose using the lightweight multi Local Intrinsic Dimensionality (multiLID), which has been originally developed in context of the detection of adversarial examples, for the automatic detection of synthetic images and the identification of the according generator networks. In contrast to many existing detection approaches, which often only work for GAN-generated images, the proposed method provides close to perfect detection results in many realistic use cases. Extensive experiments on known and newly created datasets demonstrate that the proposed multiLID approach exhibits superiority in diffusion detection and model identification. Since the empirical evaluations of recent publications on the detection of generated images are often mainly focused on the "LSUN-Bedroom" dataset, we further establish a comprehensive benchmark for the detection of diffusion-generated images, including samples from several diffusion models with different image sizes.
MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedback
Are Vision Language Models Texture or Shape Biased and Can We Steer Them?
Vision language models (VLMs) have drastically changed the computer vision model landscape in only a few years, opening an exciting array of new applications from zero-shot image classification, over to image captioning, and visual question answering. Unlike pure vision models, they offer an intuitive way to access visual content through language prompting. The wide applicability of such models encourages us to ask whether they also align with human vision - specifically, how far they adopt human-induced visual biases through multimodal fusion, or whether they simply inherit biases from pure vision models. One important visual bias is the texture vs. shape bias, or the dominance of local over global information. In this paper, we study this bias in a wide range of popular VLMs. Interestingly, we find that VLMs are often more shape-biased than their vision encoders, indicating that visual biases are modulated to some extent through text in multimodal models. If text does indeed influence visual biases, this suggests that we may be able to steer visual biases not just through visual input but also through language: a hypothesis that we confirm through extensive experiments. For instance, we are able to steer shape bias from as low as 49% to as high as 72% through prompting alone. For now, the strong human bias towards shape (96%) remains out of reach for all tested VLMs.
The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI
Clinical monitoring of metastatic disease to the brain can be a laborious and time-consuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.
The Power of Linear Combinations: Learning with Random Convolutions
Following the traditional paradigm of convolutional neural networks (CNNs), modern CNNs manage to keep pace with more recent, for example transformer-based, models by not only increasing model depth and width but also the kernel size. This results in large amounts of learnable model parameters that need to be handled during training. While following the convolutional paradigm with the according spatial inductive bias, we question the significance of learned convolution filters. In fact, our findings demonstrate that many contemporary CNN architectures can achieve high test accuracies without ever updating randomly initialized (spatial) convolution filters. Instead, simple linear combinations (implemented through efficient 1times 1 convolutions) suffice to effectively recombine even random filters into expressive network operators. Furthermore, these combinations of random filters can implicitly regularize the resulting operations, mitigating overfitting and enhancing overall performance and robustness. Conversely, retaining the ability to learn filter updates can impair network performance. Lastly, although we only observe relatively small gains from learning 3times 3 convolutions, the learning gains increase proportionally with kernel size, owing to the non-idealities of the independent and identically distributed (i.i.d.) nature of default initialization techniques.
Combining Deep Learning and GARCH Models for Financial Volatility and Risk Forecasting
In this paper, we develop a hybrid approach to forecasting the volatility and risk of financial instruments by combining common econometric GARCH time series models with deep learning neural networks. For the latter, we employ Gated Recurrent Unit (GRU) networks, whereas four different specifications are used as the GARCH component: standard GARCH, EGARCH, GJR-GARCH and APARCH. Models are tested using daily logarithmic returns on the S&P 500 index as well as gold price Bitcoin prices, with the three assets representing quite distinct volatility dynamics. As the main volatility estimator, also underlying the target function of our hybrid models, we use the price-range-based Garman-Klass estimator, modified to incorporate the opening and closing prices. Volatility forecasts resulting from the hybrid models are employed to evaluate the assets' risk using the Value-at-Risk (VaR) and Expected Shortfall (ES) at two different tolerance levels of 5% and 1%. Gains from combining the GARCH and GRU approaches are discussed in the contexts of both the volatility and risk forecasts. In general, it can be concluded that the hybrid solutions produce more accurate point volatility forecasts, although it does not necessarily translate into superior VaR and ES forecasts.
Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions
Generative convolutional deep neural networks, e.g. popular GAN architectures, are relying on convolution based up-sampling methods to produce non-scalar outputs like images or video sequences. In this paper, we show that common up-sampling methods, i.e. known as up-convolution or transposed convolution, are causing the inability of such models to reproduce spectral distributions of natural training data correctly. This effect is independent of the underlying architecture and we show that it can be used to easily detect generated data like deepfakes with up to 100% accuracy on public benchmarks. To overcome this drawback of current generative models, we propose to add a novel spectral regularization term to the training optimization objective. We show that this approach not only allows to train spectral consistent GANs that are avoiding high frequency errors. Also, we show that a correct approximation of the frequency spectrum has positive effects on the training stability and output quality of generative networks.
WoodYOLO: A Novel Object Detector for Wood Species Detection in Microscopic Images
Wood species identification plays a crucial role in various industries, from ensuring the legality of timber products to advancing ecological conservation efforts. This paper introduces WoodYOLO, a novel object detection algorithm specifically designed for microscopic wood fiber analysis. Our approach adapts the YOLO architecture to address the challenges posed by large, high-resolution microscopy images and the need for high recall in localization of the cell type of interest (vessel elements). Our results show that WoodYOLO significantly outperforms state-of-the-art models, achieving performance gains of 12.9% and 6.5% in F2 score over YOLOv10 and YOLOv7, respectively. This improvement in automated wood cell type localization capabilities contributes to enhancing regulatory compliance, supporting sustainable forestry practices, and promoting biodiversity conservation efforts globally.