- The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC): Data set The Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC) is an open data challenge to classify simulated astronomical time-series data in preparation for observations from the Large Synoptic Survey Telescope (LSST), which will achieve first light in 2019 and commence its 10-year main survey in 2022. LSST will revolutionize our understanding of the changing sky, discovering and measuring millions of time-varying objects. In this challenge, we pose the question: how well can we classify objects in the sky that vary in brightness from simulated LSST time-series data, with all its challenges of non-representativity? In this note we explain the need for a data challenge to help classify such astronomical sources and describe the PLAsTiCC data set and Kaggle data challenge, noting that while the references are provided for context, they are not needed to participate in the challenge. 26 authors · Sep 28, 2018
- Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC) We describe the simulated data sample for the "Photometric LSST Astronomical Time Series Classification Challenge" (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the Large Synoptic Survey Telescope (LSST), a new facility expected to start in the early 2020s. The challenge was hosted by Kaggle, ran from 2018 September 28 to 2018 December 17, and included 1,094 teams competing for prizes. Here we provide details of the 18 transient and variable source models, which were not revealed until after the challenge, and release the model libraries at https://doi.org/10.5281/zenodo.2612896. We describe the LSST Operations Simulator used to predict realistic observing conditions, and we describe the publicly available SNANA simulation code used to transform the models into observed fluxes and uncertainties in the LSST passbands (ugrizy). Although PLAsTiCC has finished, the publicly available models and simulation tools are being used within the astronomy community to further improve classification, and to study contamination in photometrically identified samples of type Ia supernova used to measure properties of dark energy. Our simulation framework will continue serving as a platform to improve the PLAsTiCC models, and to develop new models. 29 authors · Mar 27, 2019
- Neural Posterior Estimation for Cataloging Astronomical Images with Spatially Varying Backgrounds and Point Spread Functions Neural posterior estimation (NPE), a type of amortized variational inference, is a computationally efficient means of constructing probabilistic catalogs of light sources from astronomical images. To date, NPE has not been used to perform inference in models with spatially varying covariates. However, ground-based astronomical images have spatially varying sky backgrounds and point spread functions (PSFs), and accounting for this variation is essential for constructing accurate catalogs of imaged light sources. In this work, we introduce a method of performing NPE with spatially varying backgrounds and PSFs. In this method, we generate synthetic catalogs and semi-synthetic images for these catalogs using randomly sampled PSF and background estimates from existing surveys. Using this data, we train a neural network, which takes an astronomical image and representations of its background and PSF as input, to output a probabilistic catalog. Our experiments with Sloan Digital Sky Survey data demonstrate the effectiveness of NPE in the presence of spatially varying backgrounds and PSFs for light source detection, star/galaxy separation, and flux measurement. 5 authors · Feb 28
- Modeling with the Crowd: Optimizing the Human-Machine Partnership with Zooniverse LSST and Euclid must address the daunting challenge of analyzing the unprecedented volumes of imaging and spectroscopic data that these next-generation instruments will generate. A promising approach to overcoming this challenge involves rapid, automatic image processing using appropriately trained Deep Learning (DL) algorithms. However, reliable application of DL requires large, accurately labeled samples of training data. Galaxy Zoo Express (GZX) is a recent experiment that simulated using Bayesian inference to dynamically aggregate binary responses provided by citizen scientists via the Zooniverse crowd-sourcing platform in real time. The GZX approach enables collaboration between human and machine classifiers and provides rapidly generated, reliably labeled datasets, thereby enabling online training of accurate machine classifiers. We present selected results from GZX and show how the Bayesian aggregation engine it uses can be extended to efficiently provide object-localization and bounding-box annotations of two-dimensional data with quantified reliability. DL algorithms that are trained using these annotations will facilitate numerous panchromatic data modeling tasks including morphological classification and substructure detection in direct imaging, as well as decontamination and emission line identification for slitless spectroscopy. Effectively combining the speed of modern computational analyses with the human capacity to extrapolate from few examples will be critical if the potential of forthcoming large-scale surveys is to be realized. 5 authors · Mar 18, 2019
- Identification of Low Surface Brightness Tidal Features in Galaxies Using Convolutional Neural Networks Faint tidal features around galaxies record their merger and interaction histories over cosmic time. Due to their low surface brightnesses and complex morphologies, existing automated methods struggle to detect such features and most work to date has heavily relied on visual inspection. This presents a major obstacle to quantitative study of tidal debris features in large statistical samples, and hence the ability to be able to use these features to advance understanding of the galaxy population as a whole. This paper uses convolutional neural networks (CNNs) with dropout and augmentation to identify galaxies in the CFHTLS-Wide Survey that have faint tidal features. Evaluating the performance of the CNNs against previously-published expert visual classifications, we find that our method achieves high (76%) completeness and low (20%) contamination, and also performs considerably better than other automated methods recently applied in the literature. We argue that CNNs offer a promising approach to effective automatic identification of low surface brightness tidal debris features in and around galaxies. When applied to forthcoming deep wide-field imaging surveys (e.g. LSST, Euclid), CNNs have the potential to provide a several order-of-magnitude increase in the sample size of morphologically-perturbed galaxies and thereby facilitate a much-anticipated revolution in terms of quantitative low surface brightness science. 4 authors · Nov 28, 2018
- Spectrophotometry in the integrated light of multiple populations in globular clusters There is vast evidence from observations of multiple stellar populations (MPs) in globular clusters (GCs). To explore the issue theoretically, this work considers two subsolar metallicities, two ages, and two initial abundance patterns: a first population of standard alpha-enhanced metal mixture stars and a second stellar population displaying C-N and Na-O anticorrelations chemical abundance patterns, along with an enhanced helium fraction. Analysing the predictions for these extreme compositions, we provide insights into the observability of not-resolved MPs into individual stars of GCs. We use colours and spectrophotometric indices measurable with modern facilities (e.g. Euclid, LSST, DES, JWST). 10 authors · Mar 4