2 MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms We introduce a large-scale dataset of math word problems and an interpretable neural math problem solver that learns to map problems to operation programs. Due to annotation challenges, current datasets in this domain have been either relatively small in scale or did not offer precise operational annotations over diverse problem types. We introduce a new representation language to model precise operation programs corresponding to each math problem that aim to improve both the performance and the interpretability of the learned models. Using this representation language, our new dataset, MathQA, significantly enhances the AQuA dataset with fully-specified operational programs. We additionally introduce a neural sequence-to-program model enhanced with automatic problem categorization. Our experiments show improvements over competitive baselines in our MathQA as well as the AQuA dataset. The results are still significantly lower than human performance indicating that the dataset poses new challenges for future research. Our dataset is available at: https://math-qa.github.io/math-QA/ 6 authors · May 30, 2019
13 MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs Recent large language models (LLMs) have demonstrated versatile capabilities in long-context scenarios. Although some recent benchmarks have been developed to evaluate the long-context capabilities of LLMs, there is a lack of benchmarks evaluating the mathematical reasoning abilities of LLMs over long contexts, which is crucial for LLMs' application in real-world scenarios. In this paper, we introduce MathHay, an automated benchmark designed to assess the long-context mathematical reasoning capabilities of LLMs. Unlike previous benchmarks like Needle in a Haystack, which focus primarily on information retrieval within long texts, MathHay demands models with both information-seeking and complex mathematical reasoning abilities. We conduct extensive experiments on MathHay to assess the long-context mathematical reasoning abilities of eight top-performing LLMs. Even the best-performing model, Gemini-1.5-Pro-002, still struggles with mathematical reasoning over long contexts, achieving only 51.26% accuracy at 128K tokens. This highlights the significant room for improvement on the MathHay benchmark. 9 authors · Oct 6, 2024 3
1 $\mathcal{B}$-Coder: Value-Based Deep Reinforcement Learning for Program Synthesis Program synthesis aims to create accurate, executable code from natural language descriptions. This field has leveraged the power of reinforcement learning (RL) in conjunction with large language models (LLMs), significantly enhancing code generation capabilities. This integration focuses on directly optimizing functional correctness, transcending conventional supervised losses. While current literature predominantly favors policy-based algorithms, attributes of program synthesis suggest a natural compatibility with value-based methods. This stems from rich collection of off-policy programs developed by human programmers, and the straightforward verification of generated programs through automated unit testing (i.e. easily obtainable rewards in RL language). Diverging from the predominant use of policy-based algorithms, our work explores the applicability of value-based approaches, leading to the development of our B-Coder (pronounced Bellman coder). Yet, training value-based methods presents challenges due to the enormous search space inherent to program synthesis. To this end, we propose an initialization protocol for RL agents utilizing pre-trained LMs and a conservative Bellman operator to reduce training complexities. Moreover, we demonstrate how to leverage the learned value functions as a dual strategy to post-process generated programs. Our empirical evaluations demonstrated B-Coder's capability in achieving state-of-the-art performance compared with policy-based methods. Remarkably, this achievement is reached with minimal reward engineering effort, highlighting the effectiveness of value-based RL, independent of reward designs. 5 authors · Oct 4, 2023
- MOTI$\mathcal{VE}$: A Drug-Target Interaction Graph For Inductive Link Prediction Drug-target interaction (DTI) prediction is crucial for identifying new therapeutics and detecting mechanisms of action. While structure-based methods accurately model physical interactions between a drug and its protein target, cell-based assays such as Cell Painting can better capture complex DTI interactions. This paper introduces MOTIVE, a Morphological cOmpound Target Interaction Graph dataset that comprises Cell Painting features for 11,000 genes and 3,600 compounds along with their relationships extracted from seven publicly available databases. We provide random, cold-source (new drugs), and cold-target (new genes) data splits to enable rigorous evaluation under realistic use cases. Our benchmark results show that graph neural networks that use Cell Painting features consistently outperform those that learn from graph structure alone, feature-based models, and topological heuristics. MOTIVE accelerates both graph ML research and drug discovery by promoting the development of more reliable DTI prediction models. MOTIVE resources are available at https://github.com/carpenter-singh-lab/motive. 4 authors · Jun 12, 2024
1 XCube ($\mathcal{X}^3$): Large-Scale 3D Generative Modeling using Sparse Voxel Hierarchies We present X^3 (pronounced XCube), a novel generative model for high-resolution sparse 3D voxel grids with arbitrary attributes. Our model can generate millions of voxels with a finest effective resolution of up to 1024^3 in a feed-forward fashion without time-consuming test-time optimization. To achieve this, we employ a hierarchical voxel latent diffusion model which generates progressively higher resolution grids in a coarse-to-fine manner using a custom framework built on the highly efficient VDB data structure. Apart from generating high-resolution objects, we demonstrate the effectiveness of XCube on large outdoor scenes at scales of 100mtimes100m with a voxel size as small as 10cm. We observe clear qualitative and quantitative improvements over past approaches. In addition to unconditional generation, we show that our model can be used to solve a variety of tasks such as user-guided editing, scene completion from a single scan, and text-to-3D. More results and details can be found at https://research.nvidia.com/labs/toronto-ai/xcube/. 6 authors · Dec 6, 2023 1
1 Measuring Pointwise $\mathcal{V}$-Usable Information In-Context-ly In-context learning (ICL) is a new learning paradigm that has gained popularity along with the development of large language models. In this work, we adapt a recently proposed hardness metric, pointwise V-usable information (PVI), to an in-context version (in-context PVI). Compared to the original PVI, in-context PVI is more efficient in that it requires only a few exemplars and does not require fine-tuning. We conducted a comprehensive empirical analysis to evaluate the reliability of in-context PVI. Our findings indicate that in-context PVI estimates exhibit similar characteristics to the original PVI. Specific to the in-context setting, we show that in-context PVI estimates remain consistent across different exemplar selections and numbers of shots. The variance of in-context PVI estimates across different exemplar selections is insignificant, which suggests that in-context PVI are stable. Furthermore, we demonstrate how in-context PVI can be employed to identify challenging instances. Our work highlights the potential of in-context PVI and provides new insights into the capabilities of ICL. 6 authors · Oct 18, 2023
- Understanding Dataset Difficulty with $\mathcal{V}$-Usable Information Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to humans; the bigger the performance gap, the harder the dataset is said to be. However, this comparison provides little understanding of how difficult each instance in a given distribution is, or what attributes make the dataset difficult for a given model. To address these questions, we frame dataset difficulty -- w.r.t. a model V -- as the lack of V-usable information (Xu et al., 2019), where a lower value indicates a more difficult dataset for V. We further introduce pointwise \mathcal{V-information} (PVI) for measuring the difficulty of individual instances w.r.t. a given distribution. While standard evaluation metrics typically only compare different models for the same dataset, V-usable information and PVI also permit the converse: for a given model V, we can compare different datasets, as well as different instances/slices of the same dataset. Furthermore, our framework allows for the interpretability of different input attributes via transformations of the input, which we use to discover annotation artefacts in widely-used NLP benchmarks. 3 authors · Oct 15, 2021
10 Modeling Complex Mathematical Reasoning via Large Language Model based MathAgent Large language models (LLMs) face challenges in solving complex mathematical problems that require comprehensive capacities to parse the statements, associate domain knowledge, perform compound logical reasoning, and integrate the intermediate rationales. Tackling all these problems once could be arduous for LLMs, thus leading to confusion in generation. In this work, we explore the potential of enhancing LLMs with agents by meticulous decomposition and modeling of mathematical reasoning process. Specifically, we propose a formal description of the mathematical solving and extend LLMs with an agent-based zero-shot framework named Planner-Reasoner-Executor-Reflector (PRER). We further provide and implement two MathAgents that define the logical forms and inherent relations via a pool of actions in different grains and orientations: MathAgent-M adapts its actions to LLMs, while MathAgent-H aligns with humankind. Experiments on miniF2F and MATH have demonstrated the effectiveness of PRER and proposed MathAgents, achieving an increase of 12.3%(53.9%66.2%) on the MiniF2F, 9.2% (49.8%59.0%) on MATH, and 13.2%(23.2%35.4%) for level-5 problems of MATH against GPT-4. Further analytical results provide more insightful perspectives on exploiting the behaviors of LLMs as agents. 7 authors · Dec 14, 2023 2
- Damped Newton Method with Near-Optimal Global $\mathcal {O}\left(k^{-3} \right)$ Convergence Rate This paper investigates the global convergence of stepsized Newton methods for convex functions. We propose several simple stepsize schedules with fast global convergence guarantees, up to O (k^{-3}), nearly matching lower complexity bounds Omega (k^{-3.5}) of second-order methods. For cases with multiple plausible smoothness parameterizations or an unknown smoothness constant, we introduce a stepsize backtracking procedure that ensures convergence as if the optimal smoothness parameters were known. 3 authors · May 29, 2024
- BPS and near-BPS black holes in $AdS_5$ and their spectrum in $\mathcal{N}=4$ SYM We study quantum corrections in the gravitational path integral around nearly 1/16-BPS black holes in asymptotically AdS_5 times S^5 space, dual to heavy states in 4D N=4 super Yang-Mills. The analysis provides a gravitational explanation of why 1/16-BPS black holes exhibit an exact degeneracy at large N and why all such states have the same charges, confirming the belief that the superconformal index precisely counts the entropy of extremal black holes. We show the presence of a gap of order N^{-2} between the 1/16-BPS black holes and the lightest near-BPS black holes within the same charge sector. This is the first example of such a gap for black holes states within the context of AdS_5 holography. We also derive the spectrum of near-BPS states that lie above this gap. Our computation relies on finding the correct version of the N=2 super-Schwarzian theory which captures the breaking of the SU(1, 1|1) symmetry when the black hole has finite temperature and non-zero chemical potential. Finally, we comment on possible stringy and non-perturbative corrections that can affect the black hole spectrum. 4 authors · Mar 2, 2022
1 P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising In this work, we tackle the task of point cloud denoising through a novel framework that adapts Diffusion Schr\"odinger bridges to points clouds. Unlike previous approaches that predict point-wise displacements from point features or learned noise distributions, our method learns an optimal transport plan between paired point clouds. Experiments on object datasets like PU-Net and real-world datasets such as ScanNet++ and ARKitScenes show that P2P-Bridge achieves significant improvements over existing methods. While our approach demonstrates strong results using only point coordinates, we also show that incorporating additional features, such as color information or point-wise DINOv2 features, further enhances the performance. Code and pretrained models are available at https://p2p-bridge.github.io. 6 authors · Aug 29, 2024
1 MotionDeltaCNN: Sparse CNN Inference of Frame Differences in Moving Camera Videos Convolutional neural network inference on video input is computationally expensive and requires high memory bandwidth. Recently, DeltaCNN managed to reduce the cost by only processing pixels with significant updates over the previous frame. However, DeltaCNN relies on static camera input. Moving cameras add new challenges in how to fuse newly unveiled image regions with already processed regions efficiently to minimize the update rate - without increasing memory overhead and without knowing the camera extrinsics of future frames. In this work, we propose MotionDeltaCNN, a sparse CNN inference framework that supports moving cameras. We introduce spherical buffers and padded convolutions to enable seamless fusion of newly unveiled regions and previously processed regions -- without increasing memory footprint. Our evaluation shows that we outperform DeltaCNN by up to 90% for moving camera videos. 7 authors · Oct 18, 2022
- Fine Tuning LLM for Enterprise: Practical Guidelines and Recommendations There is a compelling necessity from enterprises for fine tuning LLMs (Large Language Models) o get them trained on proprietary domain knowledge. The challenge is to imbibe the LLMs with domain specific knowledge using the most optimial resource and cost and in the best possible time. Many enterprises rely on RAG (Retrieval Augmented Generation) which does not need LLMs to be ine-tuned but they are limited by the quality of vector databases and their retrieval capabilities rather than the intrinsic capabilities of the LLMs themselves. In our current work we focus on fine tuning LLaMA, an open source LLM using proprietary documents and code from an enterprise repository and use the fine tuned models to evaluate the quality of responses. As part of this work, we aim to guide beginners on how to start with fine tuning an LLM for documentation and code by making educated guesses on size of GPU required and options that are available for formatting the data. We also propose pre processing recipes for both documentation and code to prepare dataset in different formats. The proposed methods of data preparation for document datasets are forming paragraph chunks, forming question and answer pairs and forming keyword and paragraph chunk pairs. For code dataset we propose forming summary and function pairs. Further, we qualitatively evaluate the results of the models for domain specific queries. Finally, we also propose practical guidelines and recommendations for fine tuning LLMs. 4 authors · Mar 23, 2024
- Style-Extracting Diffusion Models for Semi-Supervised Histopathology Segmentation Deep learning-based image generation has seen significant advancements with diffusion models, notably improving the quality of generated images. Despite these developments, generating images with unseen characteristics beneficial for downstream tasks has received limited attention. To bridge this gap, we propose Style-Extracting Diffusion Models, featuring two conditioning mechanisms. Specifically, we utilize 1) a style conditioning mechanism which allows to inject style information of previously unseen images during image generation and 2) a content conditioning which can be targeted to a downstream task, e.g., layout for segmentation. We introduce a trainable style encoder to extract style information from images, and an aggregation block that merges style information from multiple style inputs. This architecture enables the generation of images with unseen styles in a zero-shot manner, by leveraging styles from unseen images, resulting in more diverse generations. In this work, we use the image layout as target condition and first show the capability of our method on a natural image dataset as a proof-of-concept. We further demonstrate its versatility in histopathology, where we combine prior knowledge about tissue composition and unannotated data to create diverse synthetic images with known layouts. This allows us to generate additional synthetic data to train a segmentation network in a semi-supervised fashion. We verify the added value of the generated images by showing improved segmentation results and lower performance variability between patients when synthetic images are included during segmentation training. Our code will be made publicly available at [LINK]. 12 authors · Mar 21, 2024
- Simple Domain Adaptation for Sparse Retrievers In Information Retrieval, and more generally in Natural Language Processing, adapting models to specific domains is conducted through fine-tuning. Despite the successes achieved by this method and its versatility, the need for human-curated and labeled data makes it impractical to transfer to new tasks, domains, and/or languages when training data doesn't exist. Using the model without training (zero-shot) is another option that however suffers an effectiveness cost, especially in the case of first-stage retrievers. Numerous research directions have emerged to tackle these issues, most of them in the context of adapting to a task or a language. However, the literature is scarcer for domain (or topic) adaptation. In this paper, we address this issue of cross-topic discrepancy for a sparse first-stage retriever by transposing a method initially designed for language adaptation. By leveraging pre-training on the target data to learn domain-specific knowledge, this technique alleviates the need for annotated data and expands the scope of domain adaptation. Despite their relatively good generalization ability, we show that even sparse retrievers can benefit from our simple domain adaptation method. 5 authors · Jan 21, 2024
- SniffyArt: The Dataset of Smelling Persons Smell gestures play a crucial role in the investigation of past smells in the visual arts yet their automated recognition poses significant challenges. This paper introduces the SniffyArt dataset, consisting of 1941 individuals represented in 441 historical artworks. Each person is annotated with a tightly fitting bounding box, 17 pose keypoints, and a gesture label. By integrating these annotations, the dataset enables the development of hybrid classification approaches for smell gesture recognition. The datasets high-quality human pose estimation keypoints are achieved through the merging of five separate sets of keypoint annotations per person. The paper also presents a baseline analysis, evaluating the performance of representative algorithms for detection, keypoint estimation, and classification tasks, showcasing the potential of combining keypoint estimation with smell gesture classification. The SniffyArt dataset lays a solid foundation for future research and the exploration of multi-task approaches leveraging pose keypoints and person boxes to advance human gesture and olfactory dimension analysis in historical artworks. 6 authors · Nov 20, 2023
- KGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution Large Language Models (LLMs) are consistently improving at increasingly realistic software engineering (SE) tasks. In real-world software stacks, significant SE effort is spent developing foundational system software like the Linux kernel. Unlike application-level software, a systems codebase like Linux is multilingual (low-level C/Assembly/Bash/Rust); gigantic (>20 million lines); critical (impacting billions of devices worldwide), and highly concurrent (involving complex multi-threading). To evaluate if ML models are useful while developing such large-scale systems-level software, we introduce kGym (a platform) and kBench (a dataset). The kGym platform provides a SE environment for large-scale experiments on the Linux kernel, including compiling and running kernels in parallel across several virtual machines, detecting operations and crashes, inspecting logs, and querying and patching the code base. We use kGym to facilitate evaluation on kBench, a crash resolution benchmark drawn from real-world Linux kernel bugs. An example bug in kBench contains crashing stack traces, a bug-reproducer file, a developer-written fix, and other associated data. To understand current performance, we conduct baseline experiments by prompting LLMs to resolve Linux kernel crashes. Our initial evaluations reveal that the best performing LLM achieves 0.72% and 5.38% in the unassisted and assisted (i.e., buggy files disclosed to the model) settings, respectively. These results highlight the need for further research to enhance model performance in SE tasks. Improving performance on kBench requires models to master new learning skills, including understanding the cause of crashes and repairing faults, writing memory-safe and hardware-aware code, and understanding concurrency. As a result, this work opens up multiple avenues of research at the intersection of machine learning and systems software. 7 authors · Jul 2, 2024
4 Program Synthesis with Large Language Models This paper explores the limits of the current generation of large language models for program synthesis in general purpose programming languages. We evaluate a collection of such models (with between 244M and 137B parameters) on two new benchmarks, MBPP and MathQA-Python, in both the few-shot and fine-tuning regimes. Our benchmarks are designed to measure the ability of these models to synthesize short Python programs from natural language descriptions. The Mostly Basic Programming Problems (MBPP) dataset contains 974 programming tasks, designed to be solvable by entry-level programmers. The MathQA-Python dataset, a Python version of the MathQA benchmark, contains 23914 problems that evaluate the ability of the models to synthesize code from more complex text. On both datasets, we find that synthesis performance scales log-linearly with model size. Our largest models, even without finetuning on a code dataset, can synthesize solutions to 59.6 percent of the problems from MBPP using few-shot learning with a well-designed prompt. Fine-tuning on a held-out portion of the dataset improves performance by about 10 percentage points across most model sizes. On the MathQA-Python dataset, the largest fine-tuned model achieves 83.8 percent accuracy. Going further, we study the model's ability to engage in dialog about code, incorporating human feedback to improve its solutions. We find that natural language feedback from a human halves the error rate compared to the model's initial prediction. Additionally, we conduct an error analysis to shed light on where these models fall short and what types of programs are most difficult to generate. Finally, we explore the semantic grounding of these models by fine-tuning them to predict the results of program execution. We find that even our best models are generally unable to predict the output of a program given a specific input. 11 authors · Aug 15, 2021