Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAutomated Vulnerability Detection in Source Code Using Deep Representation Learning
Increasing numbers of software vulnerabilities are discovered every year whether they are reported publicly or discovered internally in proprietary code. These vulnerabilities can pose serious risk of exploit and result in system compromise, information leaks, or denial of service. We leveraged the wealth of C and C++ open-source code available to develop a large-scale function-level vulnerability detection system using machine learning. To supplement existing labeled vulnerability datasets, we compiled a vast dataset of millions of open-source functions and labeled it with carefully-selected findings from three different static analyzers that indicate potential exploits. The labeled dataset is available at: https://osf.io/d45bw/. Using these datasets, we developed a fast and scalable vulnerability detection tool based on deep feature representation learning that directly interprets lexed source code. We evaluated our tool on code from both real software packages and the NIST SATE IV benchmark dataset. Our results demonstrate that deep feature representation learning on source code is a promising approach for automated software vulnerability detection.
A Repository-Level Dataset For Detecting, Classifying and Repairing Software Vulnerabilities
Open-Source Software (OSS) vulnerabilities bring great challenges to the software security and pose potential risks to our society. Enormous efforts have been devoted into automated vulnerability detection, among which deep learning (DL)-based approaches have proven to be the most effective. However, the current labeled data present the following limitations: (1) Tangled Patches: Developers may submit code changes unrelated to vulnerability fixes within patches, leading to tangled patches. (2) Lacking Inter-procedural Vulnerabilities: The existing vulnerability datasets typically contain function-level and file-level vulnerabilities, ignoring the relations between functions, thus rendering the approaches unable to detect the inter-procedural vulnerabilities. (3) Outdated Patches: The existing datasets usually contain outdated patches, which may bias the model during training. To address the above limitations, in this paper, we propose an automated data collection framework and construct the first repository-level high-quality vulnerability dataset named ReposVul. The proposed framework mainly contains three modules: (1) A vulnerability untangling module, aiming at distinguishing vulnerability-fixing related code changes from tangled patches, in which the Large Language Models (LLMs) and static analysis tools are jointly employed. (2) A multi-granularity dependency extraction module, aiming at capturing the inter-procedural call relationships of vulnerabilities, in which we construct multiple-granularity information for each vulnerability patch, including repository-level, file-level, function-level, and line-level. (3) A trace-based filtering module, aiming at filtering the outdated patches, which leverages the file path trace-based filter and commit time trace-based filter to construct an up-to-date dataset.
Learning to Quantize Vulnerability Patterns and Match to Locate Statement-Level Vulnerabilities
Deep learning (DL) models have become increasingly popular in identifying software vulnerabilities. Prior studies found that vulnerabilities across different vulnerable programs may exhibit similar vulnerable scopes, implicitly forming discernible vulnerability patterns that can be learned by DL models through supervised training. However, vulnerable scopes still manifest in various spatial locations and formats within a program, posing challenges for models to accurately identify vulnerable statements. Despite this challenge, state-of-the-art vulnerability detection approaches fail to exploit the vulnerability patterns that arise in vulnerable programs. To take full advantage of vulnerability patterns and unleash the ability of DL models, we propose a novel vulnerability-matching approach in this paper, drawing inspiration from program analysis tools that locate vulnerabilities based on pre-defined patterns. Specifically, a vulnerability codebook is learned, which consists of quantized vectors representing various vulnerability patterns. During inference, the codebook is iterated to match all learned patterns and predict the presence of potential vulnerabilities within a given program. Our approach was extensively evaluated on a real-world dataset comprising more than 188,000 C/C++ functions. The evaluation results show that our approach achieves an F1-score of 94% (6% higher than the previous best) and 82% (19% higher than the previous best) for function and statement-level vulnerability identification, respectively. These substantial enhancements highlight the effectiveness of our approach to identifying vulnerabilities. The training code and pre-trained models are available at https://github.com/optimatch/optimatch.
An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation
AI-powered coding assistants such as GitHub Copilot and OpenAI ChatGPT have achieved notable success in automating code generation. However, these tools rely on pre-trained Large Language Models (LLMs) that are typically trained on human-written code sourced from open-source project hosting sites like GitHub, which often contains inherent security vulnerabilities. These vulnerabilities may then be mirrored in the code generated by these LLMs, a critical risk revealed and highlighted by recent empirical studies. In this work, we present an exploratory study on whether fine-tuning pre-trained LLMs on datasets of vulnerability-fixing commits can promote secure code generation. We explored two parameter-efficient fine-tuning techniques (LoRa and IA3) on two pre-trained LLMs for code generation. We crawled a fine-tuning dataset (14,622 C and C++ files) for secure code generation by collecting code fixes of confirmed vulnerabilities from open-source repositories. Our evaluation dataset comprises 52 vulnerability scenarios designed to cover the top most dangerous C and C++ Common Weakness Enumerations (CWEs). Each scenario is a prompt that may induce LLMs to generate vulnerable code. Our exploration reveals that fine-tuning LLMs can improve secure code generation by 6.4% in C language and 5.4% in C++ language. We further experimented with fine-tuning LLMs using different versions of the collected secure code dataset (block, function, and line). We found that fine-tuning with function-level and block-level datasets achieves the best secure code generation performance, compared to the alternatives (file-level and line-level).
Vulnerability Handling of AI-Generated Code -- Existing Solutions and Open Challenges
The increasing use of generative Artificial Intelligence (AI) in modern software engineering, particularly Large Language Models (LLMs) for code generation, has transformed professional software development by boosting productivity and automating development processes. This adoption, however, has highlighted a significant issue: the introduction of security vulnerabilities into the code. These vulnerabilities result, e.g., from flaws in the training data that propagate into the generated code, creating challenges in disclosing them. Traditional vulnerability handling processes often involve extensive manual review. Applying such traditional processes to AI-generated code is challenging. AI-generated code may include several vulnerabilities, possibly in slightly different forms as developers might not build on already implemented code but prompt similar tasks. In this work, we explore the current state of LLM-based approaches for vulnerability handling, focusing on approaches for vulnerability detection, localization, and repair. We provide an overview of recent progress in this area and highlight open challenges that must be addressed in order to establish a reliable and scalable vulnerability handling process of AI-generated code.
LLM-Powered Code Vulnerability Repair with Reinforcement Learning and Semantic Reward
In software development, the predominant emphasis on functionality often supersedes security concerns, a trend gaining momentum with AI-driven automation tools like GitHub Copilot. These tools significantly improve developers' efficiency in functional code development. Nevertheless, it remains a notable concern that such tools are also responsible for creating insecure code, predominantly because of pre-training on publicly available repositories with vulnerable code. Moreover, developers are called the "weakest link in the chain" since they have very minimal knowledge of code security. Although existing solutions provide a reasonable solution to vulnerable code, they must adequately describe and educate the developers on code security to ensure that the security issues are not repeated. Therefore we introduce a multipurpose code vulnerability analysis system SecRepair, powered by a large language model, CodeGen2 assisting the developer in identifying and generating fixed code along with a complete description of the vulnerability with a code comment. Our innovative methodology uses a reinforcement learning paradigm to generate code comments augmented by a semantic reward mechanism. Inspired by how humans fix code issues, we propose an instruction-based dataset suitable for vulnerability analysis with LLMs. We further identify zero-day and N-day vulnerabilities in 6 Open Source IoT Operating Systems on GitHub. Our findings underscore that incorporating reinforcement learning coupled with semantic reward augments our model's performance, thereby fortifying its capacity to address code vulnerabilities with improved efficacy.
On the Adversarial Robustness of Instruction-Tuned Large Language Models for Code
The advent of instruction-tuned Large Language Models designed for coding tasks (Code LLMs) has transformed software engineering practices. However, their robustness against various input challenges remains a critical concern. This study introduces DegradePrompter, a novel method designed to systematically evaluate the robustness of instruction-tuned Code LLMs. We assess the impact of diverse input challenges on the functionality and correctness of generated code using rigorous metrics and established benchmarks. Our comprehensive evaluation includes five state-of-the-art open-source models and three production-grade closed-source models, revealing varying degrees of robustness. Open-source models demonstrate an increased susceptibility to input perturbations, resulting in declines in functional correctness ranging from 12% to 34%. In contrast, commercial models demonstrate relatively greater resilience, with performance degradation ranging from 3% to 24%. To enhance the robustness of the models against these vulnerabilities, we investigate a straightforward yet effective mitigation strategy. Our findings highlight the need for robust defense mechanisms and comprehensive evaluations during both the development and deployment phases to ensure the resilience and reliability of automated code generation systems.
Can Large Language Models Find And Fix Vulnerable Software?
In this study, we evaluated the capability of Large Language Models (LLMs), particularly OpenAI's GPT-4, in detecting software vulnerabilities, comparing their performance against traditional static code analyzers like Snyk and Fortify. Our analysis covered numerous repositories, including those from NASA and the Department of Defense. GPT-4 identified approximately four times the vulnerabilities than its counterparts. Furthermore, it provided viable fixes for each vulnerability, demonstrating a low rate of false positives. Our tests encompassed 129 code samples across eight programming languages, revealing the highest vulnerabilities in PHP and JavaScript. GPT-4's code corrections led to a 90% reduction in vulnerabilities, requiring only an 11% increase in code lines. A critical insight was LLMs' ability to self-audit, suggesting fixes for their identified vulnerabilities and underscoring their precision. Future research should explore system-level vulnerabilities and integrate multiple static code analyzers for a holistic perspective on LLMs' potential.
Deep Learning based Vulnerability Detection: Are We There Yet?
Automated detection of software vulnerabilities is a fundamental problem in software security. Existing program analysis techniques either suffer from high false positives or false negatives. Recent progress in Deep Learning (DL) has resulted in a surge of interest in applying DL for automated vulnerability detection. Several recent studies have demonstrated promising results achieving an accuracy of up to 95% at detecting vulnerabilities. In this paper, we ask, "how well do the state-of-the-art DL-based techniques perform in a real-world vulnerability prediction scenario?". To our surprise, we find that their performance drops by more than 50%. A systematic investigation of what causes such precipitous performance drop reveals that existing DL-based vulnerability prediction approaches suffer from challenges with the training data (e.g., data duplication, unrealistic distribution of vulnerable classes, etc.) and with the model choices (e.g., simple token-based models). As a result, these approaches often do not learn features related to the actual cause of the vulnerabilities. Instead, they learn unrelated artifacts from the dataset (e.g., specific variable/function names, etc.). Leveraging these empirical findings, we demonstrate how a more principled approach to data collection and model design, based on realistic settings of vulnerability prediction, can lead to better solutions. The resulting tools perform significantly better than the studied baseline: up to 33.57% boost in precision and 128.38% boost in recall compared to the best performing model in the literature. Overall, this paper elucidates existing DL-based vulnerability prediction systems' potential issues and draws a roadmap for future DL-based vulnerability prediction research. In that spirit, we make available all the artifacts supporting our results: https://git.io/Jf6IA.
Transformer-based Vulnerability Detection in Code at EditTime: Zero-shot, Few-shot, or Fine-tuning?
Software vulnerabilities bear enterprises significant costs. Despite extensive efforts in research and development of software vulnerability detection methods, uncaught vulnerabilities continue to put software owners and users at risk. Many current vulnerability detection methods require that code snippets can compile and build before attempting detection. This, unfortunately, introduces a long latency between the time a vulnerability is injected to the time it is removed, which can substantially increases the cost of fixing a vulnerability. We recognize that the current advances in machine learning can be used to detect vulnerable code patterns on syntactically incomplete code snippets as the developer is writing the code at EditTime. In this paper we present a practical system that leverages deep learning on a large-scale data set of vulnerable code patterns to learn complex manifestations of more than 250 vulnerability types and detect vulnerable code patterns at EditTime. We discuss zero-shot, few-shot, and fine-tuning approaches on state of the art pre-trained Large Language Models (LLMs). We show that in comparison with state of the art vulnerability detection models our approach improves the state of the art by 10%. We also evaluate our approach to detect vulnerability in auto-generated code by code LLMs. Evaluation on a benchmark of high-risk code scenarios shows a reduction of up to 90% vulnerability reduction.
Enhancing Large Language Models for Secure Code Generation: A Dataset-driven Study on Vulnerability Mitigation
Large language models (LLMs) have brought significant advancements to code generation, benefiting both novice and experienced developers. However, their training using unsanitized data from open-source repositories, like GitHub, introduces the risk of inadvertently propagating security vulnerabilities. To effectively mitigate this concern, this paper presents a comprehensive study focused on evaluating and enhancing code LLMs from a software security perspective. We introduce SecuCoGenSecuCoGen has been uploaded as supplemental material and will be made publicly available after publication., a meticulously curated dataset targeting 21 critical vulnerability types. SecuCoGen comprises 180 samples and serves as the foundation for conducting experiments on three crucial code-related tasks: code generation, code repair and vulnerability classification, with a strong emphasis on security. Our experimental results reveal that existing models often overlook security concerns during code generation, leading to the generation of vulnerable code. To address this, we propose effective approaches to mitigate the security vulnerabilities and enhance the overall robustness of code generated by LLMs. Moreover, our study identifies weaknesses in existing models' ability to repair vulnerable code, even when provided with vulnerability information. Additionally, certain vulnerability types pose challenges for the models, hindering their performance in vulnerability classification. Based on these findings, we believe our study will have a positive impact on the software engineering community, inspiring the development of improved methods for training and utilizing LLMs, thereby leading to safer and more trustworthy model deployment.
Automating the Detection of Code Vulnerabilities by Analyzing GitHub Issues
In today's digital landscape, the importance of timely and accurate vulnerability detection has significantly increased. This paper presents a novel approach that leverages transformer-based models and machine learning techniques to automate the identification of software vulnerabilities by analyzing GitHub issues. We introduce a new dataset specifically designed for classifying GitHub issues relevant to vulnerability detection. We then examine various classification techniques to determine their effectiveness. The results demonstrate the potential of this approach for real-world application in early vulnerability detection, which could substantially reduce the window of exploitation for software vulnerabilities. This research makes a key contribution to the field by providing a scalable and computationally efficient framework for automated detection, enabling the prevention of compromised software usage before official notifications. This work has the potential to enhance the security of open-source software ecosystems.
CVEfixes: Automated Collection of Vulnerabilities and Their Fixes from Open-Source Software
Data-driven research on the automated discovery and repair of security vulnerabilities in source code requires comprehensive datasets of real-life vulnerable code and their fixes. To assist in such research, we propose a method to automatically collect and curate a comprehensive vulnerability dataset from Common Vulnerabilities and Exposures (CVE) records in the public National Vulnerability Database (NVD). We implement our approach in a fully automated dataset collection tool and share an initial release of the resulting vulnerability dataset named CVEfixes. The CVEfixes collection tool automatically fetches all available CVE records from the NVD, gathers the vulnerable code and corresponding fixes from associated open-source repositories, and organizes the collected information in a relational database. Moreover, the dataset is enriched with meta-data such as programming language, and detailed code and security metrics at five levels of abstraction. The collection can easily be repeated to keep up-to-date with newly discovered or patched vulnerabilities. The initial release of CVEfixes spans all published CVEs up to 9 June 2021, covering 5365 CVE records for 1754 open-source projects that were addressed in a total of 5495 vulnerability fixing commits. CVEfixes supports various types of data-driven software security research, such as vulnerability prediction, vulnerability classification, vulnerability severity prediction, analysis of vulnerability-related code changes, and automated vulnerability repair.
Take a Step Further: Understanding Page Spray in Linux Kernel Exploitation
Recently, a novel method known as Page Spray emerges, focusing on page-level exploitation for kernel vulnerabilities. Despite the advantages it offers in terms of exploitability, stability, and compatibility, comprehensive research on Page Spray remains scarce. Questions regarding its root causes, exploitation model, comparative benefits over other exploitation techniques, and possible mitigation strategies have largely remained unanswered. In this paper, we conduct a systematic investigation into Page Spray, providing an in-depth understanding of this exploitation technique. We introduce a comprehensive exploit model termed the \sys model, elucidating its fundamental principles. Additionally, we conduct a thorough analysis of the root causes underlying Page Spray occurrences within the Linux Kernel. We design an analyzer based on the Page Spray analysis model to identify Page Spray callsites. Subsequently, we evaluate the stability, exploitability, and compatibility of Page Spray through meticulously designed experiments. Finally, we propose mitigation principles for addressing Page Spray and introduce our own lightweight mitigation approach. This research aims to assist security researchers and developers in gaining insights into Page Spray, ultimately enhancing our collective understanding of this emerging exploitation technique and making improvements to the community.
Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities
Security vulnerabilities in modern software are prevalent and harmful. While automated vulnerability detection tools have made promising progress, their scalability and applicability remain challenging. Recently, Large Language Models (LLMs), such as GPT-4 and CodeLlama, have demonstrated remarkable performance on code-related tasks. However, it is unknown whether such LLMs can do complex reasoning over code. In this work, we explore whether pre-trained LLMs can detect security vulnerabilities and address the limitations of existing tools. We evaluate the effectiveness of pre-trained LLMs on a set of five diverse security benchmarks spanning two languages, Java and C/C++, and including code samples from synthetic and real-world projects. We evaluate the effectiveness of LLMs in terms of their performance, explainability, and robustness. By designing a series of effective prompting strategies, we obtain the best results on the synthetic datasets with GPT-4: F1 scores of 0.79 on OWASP, 0.86 on Juliet Java, and 0.89 on Juliet C/C++. Expectedly, the performance of LLMs drops on the more challenging real-world datasets: CVEFixes Java and CVEFixes C/C++, with GPT-4 reporting F1 scores of 0.48 and 0.62, respectively. We show that LLMs can often perform better than existing static analysis and deep learning-based vulnerability detection tools, especially for certain classes of vulnerabilities. Moreover, LLMs also often provide reliable explanations, identifying the vulnerable data flows in code. We find that fine-tuning smaller LLMs can outperform the larger LLMs on synthetic datasets but provide limited gains on real-world datasets. When subjected to adversarial attacks on code, LLMs show mild degradation, with average accuracy reduction of up to 12.67%. Finally, we share our insights and recommendations for future work on leveraging LLMs for vulnerability detection.
Virtual Prompt Injection for Instruction-Tuned Large Language Models
We present Virtual Prompt Injection (VPI) for instruction-tuned Large Language Models (LLMs). VPI allows an attacker-specified virtual prompt to steer the model behavior under specific trigger scenario without any explicit injection in model input. For instance, if an LLM is compromised with the virtual prompt "Describe Joe Biden negatively." for Joe Biden-related instructions, then any service deploying this model will propagate biased views when handling user queries related to Joe Biden. VPI is especially harmful for two primary reasons. Firstly, the attacker can take fine-grained control over LLM behaviors by defining various virtual prompts, exploiting LLMs' proficiency in following instructions. Secondly, this control is achieved without any interaction from the attacker while the model is in service, leading to persistent attack. To demonstrate the threat, we propose a simple method for performing VPI by poisoning the model's instruction tuning data. We find that our proposed method is highly effective in steering the LLM with VPI. For example, by injecting only 52 poisoned examples (0.1% of the training data size) into the instruction tuning data, the percentage of negative responses given by the trained model on Joe Biden-related queries change from 0% to 40%. We thus highlight the necessity of ensuring the integrity of the instruction-tuning data as little poisoned data can cause stealthy and persistent harm to the deployed model. We further explore the possible defenses and identify data filtering as an effective way to defend against the poisoning attacks. Our project page is available at https://poison-llm.github.io.
Exploiting Novel GPT-4 APIs
Language model attacks typically assume one of two extreme threat models: full white-box access to model weights, or black-box access limited to a text generation API. However, real-world APIs are often more flexible than just text generation: these APIs expose ``gray-box'' access leading to new threat vectors. To explore this, we red-team three new functionalities exposed in the GPT-4 APIs: fine-tuning, function calling and knowledge retrieval. We find that fine-tuning a model on as few as 15 harmful examples or 100 benign examples can remove core safeguards from GPT-4, enabling a range of harmful outputs. Furthermore, we find that GPT-4 Assistants readily divulge the function call schema and can be made to execute arbitrary function calls. Finally, we find that knowledge retrieval can be hijacked by injecting instructions into retrieval documents. These vulnerabilities highlight that any additions to the functionality exposed by an API can create new vulnerabilities.
SecCodePLT: A Unified Platform for Evaluating the Security of Code GenAI
Existing works have established multiple benchmarks to highlight the security risks associated with Code GenAI. These risks are primarily reflected in two areas: a model potential to generate insecure code (insecure coding) and its utility in cyberattacks (cyberattack helpfulness). While these benchmarks have made significant strides, there remain opportunities for further improvement. For instance, many current benchmarks tend to focus more on a model ability to provide attack suggestions rather than its capacity to generate executable attacks. Additionally, most benchmarks rely heavily on static evaluation metrics, which may not be as precise as dynamic metrics such as passing test cases. Conversely, expert-verified benchmarks, while offering high-quality data, often operate at a smaller scale. To address these gaps, we develop SecCodePLT, a unified and comprehensive evaluation platform for code GenAIs' risks. For insecure code, we introduce a new methodology for data creation that combines experts with automatic generation. Our methodology ensures the data quality while enabling large-scale generation. We also associate samples with test cases to conduct code-related dynamic evaluation. For cyberattack helpfulness, we set up a real environment and construct samples to prompt a model to generate actual attacks, along with dynamic metrics in our environment. We conduct extensive experiments and show that SecCodePLT outperforms the state-of-the-art (SOTA) benchmark CyberSecEval in security relevance. Furthermore, it better identifies the security risks of SOTA models in insecure coding and cyberattack helpfulness. Finally, we apply SecCodePLT to the SOTA code agent, Cursor, and, for the first time, identify non-trivial security risks in this advanced coding agent.
CWEval: Outcome-driven Evaluation on Functionality and Security of LLM Code Generation
Large Language Models (LLMs) have significantly aided developers by generating or assisting in code writing, enhancing productivity across various tasks. While identifying incorrect code is often straightforward, detecting vulnerabilities in functionally correct code is more challenging, especially for developers with limited security knowledge, which poses considerable security risks of using LLM-generated code and underscores the need for robust evaluation benchmarks that assess both functional correctness and security. Current benchmarks like CyberSecEval and SecurityEval attempt to solve it but are hindered by unclear and impractical specifications, failing to assess both functionality and security accurately. To tackle these deficiencies, we introduce CWEval, a novel outcome-driven evaluation framework designed to enhance the evaluation of secure code generation by LLMs. This framework not only assesses code functionality but also its security simultaneously with high-quality task specifications and outcome-driven test oracles which provides high accuracy. Coupled with CWEval-bench, a multilingual, security-critical coding benchmark, CWEval provides a rigorous empirical security evaluation on LLM-generated code, overcoming previous benchmarks' shortcomings. Through our evaluations, CWEval reveals a notable portion of functional but insecure code produced by LLMs, and shows a serious inaccuracy of previous evaluations, ultimately contributing significantly to the field of secure code generation. We open-source our artifact at: https://github.com/Co1lin/CWEval .
Tamper-Resistant Safeguards for Open-Weight LLMs
Rapid advances in the capabilities of large language models (LLMs) have raised widespread concerns regarding their potential for malicious use. Open-weight LLMs present unique challenges, as existing safeguards lack robustness to tampering attacks that modify model weights. For example, recent works have demonstrated that refusal and unlearning safeguards can be trivially removed with a few steps of fine-tuning. These vulnerabilities necessitate new approaches for enabling the safe release of open-weight LLMs. We develop a method, called TAR, for building tamper-resistant safeguards into open-weight LLMs such that adversaries cannot remove the safeguards even after thousands of steps of fine-tuning. In extensive evaluations and red teaming analyses, we find that our method greatly improves tamper-resistance while preserving benign capabilities. Our results demonstrate that tamper-resistance is a tractable problem, opening up a promising new avenue to improve the safety and security of open-weight LLMs.
Benchmarking Large Language Models for Multi-Language Software Vulnerability Detection
Recent advancements in generative AI have led to the widespread adoption of large language models (LLMs) in software engineering, addressing numerous long-standing challenges. However, a comprehensive study examining the capabilities of LLMs in software vulnerability detection (SVD), a crucial aspect of software security, is currently lacking. Existing research primarily focuses on evaluating LLMs using C/C++ datasets. It typically explores only one or two strategies among prompt engineering, instruction tuning, and sequence classification fine-tuning for open-source LLMs. Consequently, there is a significant knowledge gap regarding the effectiveness of diverse LLMs in detecting vulnerabilities across various programming languages. To address this knowledge gap, we present a comprehensive empirical study evaluating the performance of LLMs on the SVD task. We have compiled a comprehensive dataset comprising 8,260 vulnerable functions in Python, 7,505 in Java, and 28,983 in JavaScript. We assess five open-source LLMs using multiple approaches, including prompt engineering, instruction tuning, and sequence classification fine-tuning. These LLMs are benchmarked against five fine-tuned small language models and two open-source static application security testing tools. Furthermore, we explore two avenues to improve LLM performance on SVD: a) Data perspective: Retraining models using downsampled balanced datasets. b) Model perspective: Investigating ensemble learning methods that combine predictions from multiple LLMs. Our comprehensive experiments demonstrate that SVD remains a challenging task for LLMs. This study provides a thorough understanding of the role of LLMs in SVD and offers practical insights for future advancements in leveraging generative AI to enhance software security practices.
Code Structure-Aware through Line-level Semantic Learning for Code Vulnerability Detection
Different from the flow semantics of natural languages, programming languages are inherently rigid in structure and grammar. Existing fine-tuning methodologies for code vulnerability detection generally treat code as long text sequences, stripping away structural elements such as newlines ('/n') and whitespace. However, this approach inadvertently results in the loss of crucial structural information, diminishing the distinct characteristics of code and impairing the accuracy of vulnerability detection. To address these challenges, we propose a novel network architecture method based on pre-trained code models, which incorporates structural information awareness. We propose an enhanced code text processing workflow that retains structural elements prior to modeling. This refinement allows the model to retain and exploit line-level structural information and semantic information during the modeling process. Furthermore, we introduce a new network architecture, the Code Structure-Aware Network through Line-level Semantic Learning (CSLS), which integrates three key components: global vulnerability awareness, line-structural awareness, and sensitive-line awareness. We have conducted comprehensive experiments using vulnerability detection datasets from real-world projects. Extensive experiments were conducted on vulnerability detection datasets derived from real-world projects. The results demonstrate that our new code pre-processing flow significantly improves existing baselines (e.g., a 3\% accuracy improvement on the Devign dataset when applied to popular models such as CoderBert and UniXcoder). The proposed network architecture also demonstrates superior accuracy in detecting vulnerabilities, surpassing newly established benchmarks. These findings underscore the importance of structural information in enhancing the efficacy of code vulnerability detection models.
Automated Code-centric Software Vulnerability Assessment: How Far Are We? An Empirical Study in C/C++
Background: The C and C++ languages hold significant importance in Software Engineering research because of their widespread use in practice. Numerous studies have utilized Machine Learning (ML) and Deep Learning (DL) techniques to detect software vulnerabilities (SVs) in the source code written in these languages. However, the application of these techniques in function-level SV assessment has been largely unexplored. SV assessment is increasingly crucial as it provides detailed information on the exploitability, impacts, and severity of security defects, thereby aiding in their prioritization and remediation. Aims: We conduct the first empirical study to investigate and compare the performance of ML and DL models, many of which have been used for SV detection, for function-level SV assessment in C/C++. Method: Using 9,993 vulnerable C/C++ functions, we evaluated the performance of six multi-class ML models and five multi-class DL models for the SV assessment at the function level based on the Common Vulnerability Scoring System (CVSS). We further explore multi-task learning, which can leverage common vulnerable code to predict all SV assessment outputs simultaneously in a single model, and compare the effectiveness and efficiency of this model type with those of the original multi-class models. Results: We show that ML has matching or even better performance compared to the multi-class DL models for function-level SV assessment with significantly less training time. Employing multi-task learning allows the DL models to perform significantly better, with an average of 8-22% increase in Matthews Correlation Coefficient (MCC). Conclusions: We distill the practices of using data-driven techniques for function-level SV assessment in C/C++, including the use of multi-task DL to balance efficiency and effectiveness. This can establish a strong foundation for future work in this area.
Revisiting the Performance of Deep Learning-Based Vulnerability Detection on Realistic Datasets
The impact of software vulnerabilities on everyday software systems is significant. Despite deep learning models being proposed for vulnerability detection, their reliability is questionable. Prior evaluations show high recall/F1 scores of up to 99%, but these models underperform in practical scenarios, particularly when assessed on entire codebases rather than just the fixing commit. This paper introduces Real-Vul, a comprehensive dataset representing real-world scenarios for evaluating vulnerability detection models. Evaluating DeepWukong, LineVul, ReVeal, and IVDetect shows a significant drop in performance, with precision decreasing by up to 95 percentage points and F1 scores by up to 91 points. Furthermore, Model performance fluctuates based on vulnerability characteristics, with better F1 scores for information leaks or code injection than for path resolution or predictable return values. The results highlight a significant performance gap that needs addressing before deploying deep learning-based vulnerability detection in practical settings. Overfitting is identified as a key issue, and an augmentation technique is proposed, potentially improving performance by up to 30%. Contributions include a dataset creation approach for better model evaluation, Real-Vul dataset, and empirical evidence of deep learning models struggling in real-world settings.
Security Weaknesses of Copilot Generated Code in GitHub
Modern code generation tools, utilizing AI models like Large Language Models (LLMs), have gained popularity for producing functional code. However, their usage presents security challenges, often resulting in insecure code merging into the code base. Evaluating the quality of generated code, especially its security, is crucial. While prior research explored various aspects of code generation, the focus on security has been limited, mostly examining code produced in controlled environments rather than real-world scenarios. To address this gap, we conducted an empirical study, analyzing code snippets generated by GitHub Copilot from GitHub projects. Our analysis identified 452 snippets generated by Copilot, revealing a high likelihood of security issues, with 32.8% of Python and 24.5% of JavaScript snippets affected. These issues span 38 different Common Weakness Enumeration (CWE) categories, including significant ones like CWE-330: Use of Insufficiently Random Values, CWE-78: OS Command Injection, and CWE-94: Improper Control of Generation of Code. Notably, eight CWEs are among the 2023 CWE Top-25, highlighting their severity. Our findings confirm that developers should be careful when adding code generated by Copilot and should also run appropriate security checks as they accept the suggested code. It also shows that practitioners should cultivate corresponding security awareness and skills.
Can Neural Decompilation Assist Vulnerability Prediction on Binary Code?
Vulnerability prediction is valuable in identifying security issues more efficiently, even though it requires the source code of the target software system, which is a restrictive hypothesis. This paper presents an experimental study to predict vulnerabilities in binary code without source code or complex representations of the binary, leveraging the pivotal idea of decompiling the binary file through neural decompilation and predicting vulnerabilities through deep learning on the decompiled source code. The results outperform the state-of-the-art in both neural decompilation and vulnerability prediction, showing that it is possible to identify vulnerable programs with this approach concerning bi-class (vulnerable/non-vulnerable) and multi-class (type of vulnerability) analysis.
Crypto Miner Attack: GPU Remote Code Execution Attacks
Remote Code Execution (RCE) exploits pose a significant threat to AI and ML systems, particularly in GPU-accelerated environments where the computational power of GPUs can be misused for malicious purposes. This paper focuses on RCE attacks leveraging deserialization vulnerabilities and custom layers, such as TensorFlow Lambda layers, which are often overlooked due to the complexity of monitoring GPU workloads. These vulnerabilities enable attackers to execute arbitrary code, blending malicious activity seamlessly into expected model behavior and exploiting GPUs for unauthorized tasks such as cryptocurrency mining. Unlike traditional CPU-based attacks, the parallel processing nature of GPUs and their high resource utilization make runtime detection exceptionally challenging. In this work, we provide a comprehensive examination of RCE exploits targeting GPUs, demonstrating an attack that utilizes these vulnerabilities to deploy a crypto miner on a GPU. We highlight the technical intricacies of such attacks, emphasize their potential for significant financial and computational costs, and propose strategies for mitigation. By shedding light on this underexplored attack vector, we aim to raise awareness and encourage the adoption of robust security measures in GPU-driven AI and ML systems, with an emphasis on static and model scanning as an easier way to detect exploits.
CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models
Large language models (LLMs) introduce new security risks, but there are few comprehensive evaluation suites to measure and reduce these risks. We present BenchmarkName, a novel benchmark to quantify LLM security risks and capabilities. We introduce two new areas for testing: prompt injection and code interpreter abuse. We evaluated multiple state-of-the-art (SOTA) LLMs, including GPT-4, Mistral, Meta Llama 3 70B-Instruct, and Code Llama. Our results show that conditioning away risk of attack remains an unsolved problem; for example, all tested models showed between 26% and 41% successful prompt injection tests. We further introduce the safety-utility tradeoff: conditioning an LLM to reject unsafe prompts can cause the LLM to falsely reject answering benign prompts, which lowers utility. We propose quantifying this tradeoff using False Refusal Rate (FRR). As an illustration, we introduce a novel test set to quantify FRR for cyberattack helpfulness risk. We find many LLMs able to successfully comply with "borderline" benign requests while still rejecting most unsafe requests. Finally, we quantify the utility of LLMs for automating a core cybersecurity task, that of exploiting software vulnerabilities. This is important because the offensive capabilities of LLMs are of intense interest; we quantify this by creating novel test sets for four representative problems. We find that models with coding capabilities perform better than those without, but that further work is needed for LLMs to become proficient at exploit generation. Our code is open source and can be used to evaluate other LLMs.
Prompt Leakage effect and defense strategies for multi-turn LLM interactions
Prompt leakage poses a compelling security and privacy threat in LLM applications. Leakage of system prompts may compromise intellectual property, and act as adversarial reconnaissance for an attacker. A systematic evaluation of prompt leakage threats and mitigation strategies is lacking, especially for multi-turn LLM interactions. In this paper, we systematically investigate LLM vulnerabilities against prompt leakage for 10 closed- and open-source LLMs, across four domains. We design a unique threat model which leverages the LLM sycophancy effect and elevates the average attack success rate (ASR) from 17.7% to 86.2% in a multi-turn setting. Our standardized setup further allows dissecting leakage of specific prompt contents such as task instructions and knowledge documents. We measure the mitigation effect of 7 black-box defense strategies, along with finetuning an open-source model to defend against leakage attempts. We present different combination of defenses against our threat model, including a cost analysis. Our study highlights key takeaways for building secure LLM applications and provides directions for research in multi-turn LLM interactions
Evaluating the Instruction-Following Robustness of Large Language Models to Prompt Injection
Large Language Models (LLMs) have demonstrated exceptional proficiency in instruction-following, becoming increasingly crucial across various applications. However, this capability brings with it the risk of prompt injection attacks, where attackers inject instructions into LLMs' input to elicit undesirable actions or content. Understanding the robustness of LLMs against such attacks is vital for their safe implementation. In this work, we establish a benchmark to evaluate the robustness of instruction-following LLMs against prompt injection attacks. Our objective is to determine the extent to which LLMs can be influenced by injected instructions and their ability to differentiate between these injected and original target instructions. Through extensive experiments with leading instruction-following LLMs, we uncover significant vulnerabilities in their robustness to such attacks. Our results indicate that some models are overly tuned to follow any embedded instructions in the prompt, overly focusing on the latter parts of the prompt without fully grasping the entire context. By contrast, models with a better grasp of the context and instruction-following capabilities will potentially be more susceptible to compromise by injected instructions. This underscores the need to shift the focus from merely enhancing LLMs' instruction-following capabilities to improving their overall comprehension of prompts and discernment of instructions that are appropriate to follow. We hope our in-depth analysis offers insights into the underlying causes of these vulnerabilities, aiding in the development of future solutions. Code and data are available at https://github.com/Leezekun/instruction-following-robustness-eval
ProphetFuzz: Fully Automated Prediction and Fuzzing of High-Risk Option Combinations with Only Documentation via Large Language Model
Vulnerabilities related to option combinations pose a significant challenge in software security testing due to their vast search space. Previous research primarily addressed this challenge through mutation or filtering techniques, which inefficiently treated all option combinations as having equal potential for vulnerabilities, thus wasting considerable time on non-vulnerable targets and resulting in low testing efficiency. In this paper, we utilize carefully designed prompt engineering to drive the large language model (LLM) to predict high-risk option combinations (i.e., more likely to contain vulnerabilities) and perform fuzz testing automatically without human intervention. We developed a tool called ProphetFuzz and evaluated it on a dataset comprising 52 programs collected from three related studies. The entire experiment consumed 10.44 CPU years. ProphetFuzz successfully predicted 1748 high-risk option combinations at an average cost of only \$8.69 per program. Results show that after 72 hours of fuzzing, ProphetFuzz discovered 364 unique vulnerabilities associated with 12.30\% of the predicted high-risk option combinations, which was 32.85\% higher than that found by state-of-the-art in the same timeframe. Additionally, using ProphetFuzz, we conducted persistent fuzzing on the latest versions of these programs, uncovering 140 vulnerabilities, with 93 confirmed by developers and 21 awarded CVE numbers.
VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection
This paper presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters.
The Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions
Today's LLMs are susceptible to prompt injections, jailbreaks, and other attacks that allow adversaries to overwrite a model's original instructions with their own malicious prompts. In this work, we argue that one of the primary vulnerabilities underlying these attacks is that LLMs often consider system prompts (e.g., text from an application developer) to be the same priority as text from untrusted users and third parties. To address this, we propose an instruction hierarchy that explicitly defines how models should behave when instructions of different priorities conflict. We then propose a data generation method to demonstrate this hierarchical instruction following behavior, which teaches LLMs to selectively ignore lower-privileged instructions. We apply this method to GPT-3.5, showing that it drastically increases robustness -- even for attack types not seen during training -- while imposing minimal degradations on standard capabilities.
How Effective Are Neural Networks for Fixing Security Vulnerabilities
Security vulnerability repair is a difficult task that is in dire need of automation. Two groups of techniques have shown promise: (1) large code language models (LLMs) that have been pre-trained on source code for tasks such as code completion, and (2) automated program repair (APR) techniques that use deep learning (DL) models to automatically fix software bugs. This paper is the first to study and compare Java vulnerability repair capabilities of LLMs and DL-based APR models. The contributions include that we (1) apply and evaluate five LLMs (Codex, CodeGen, CodeT5, PLBART and InCoder), four fine-tuned LLMs, and four DL-based APR techniques on two real-world Java vulnerability benchmarks (Vul4J and VJBench), (2) design code transformations to address the training and test data overlapping threat to Codex, (3) create a new Java vulnerability repair benchmark VJBench, and its transformed version VJBench-trans and (4) evaluate LLMs and APR techniques on the transformed vulnerabilities in VJBench-trans. Our findings include that (1) existing LLMs and APR models fix very few Java vulnerabilities. Codex fixes 10.2 (20.4%), the most number of vulnerabilities. (2) Fine-tuning with general APR data improves LLMs' vulnerability-fixing capabilities. (3) Our new VJBench reveals that LLMs and APR models fail to fix many Common Weakness Enumeration (CWE) types, such as CWE-325 Missing cryptographic step and CWE-444 HTTP request smuggling. (4) Codex still fixes 8.3 transformed vulnerabilities, outperforming all the other LLMs and APR models on transformed vulnerabilities. The results call for innovations to enhance automated Java vulnerability repair such as creating larger vulnerability repair training data, tuning LLMs with such data, and applying code simplification transformation to facilitate vulnerability repair.
NeuRI: Diversifying DNN Generation via Inductive Rule Inference
Deep Learning (DL) is prevalently used in various industries to improve decision-making and automate processes, driven by the ever-evolving DL libraries and compilers. The correctness of DL systems is crucial for trust in DL applications. As such, the recent wave of research has been studying the automated synthesis of test-cases (i.e., DNN models and their inputs) for fuzzing DL systems. However, existing model generators only subsume a limited number of operators, lacking the ability to pervasively model operator constraints. To address this challenge, we propose NeuRI, a fully automated approach for generating valid and diverse DL models composed of hundreds of types of operators. NeuRI adopts a three-step process: (i) collecting valid and invalid API traces from various sources; (ii) applying inductive program synthesis over the traces to infer the constraints for constructing valid models; and (iii) using hybrid model generation which incorporates both symbolic and concrete operators. Our evaluation shows that NeuRI improves branch coverage of TensorFlow and PyTorch by 24% and 15% over the state-of-the-art model-level fuzzers. NeuRI finds 100 new bugs for PyTorch and TensorFlow in four months, with 81 already fixed or confirmed. Of these, 9 bugs are labelled as high priority or security vulnerability, constituting 10% of all high-priority bugs of the period. Open-source developers regard error-inducing tests reported by us as "high-quality" and "common in practice".
VulDeePecker: A Deep Learning-Based System for Vulnerability Detection
The automatic detection of software vulnerabilities is an important research problem. However, existing solutions to this problem rely on human experts to define features and often miss many vulnerabilities (i.e., incurring high false negative rate). In this paper, we initiate the study of using deep learning-based vulnerability detection to relieve human experts from the tedious and subjective task of manually defining features. Since deep learning is motivated to deal with problems that are very different from the problem of vulnerability detection, we need some guiding principles for applying deep learning to vulnerability detection. In particular, we need to find representations of software programs that are suitable for deep learning. For this purpose, we propose using code gadgets to represent programs and then transform them into vectors, where a code gadget is a number of (not necessarily consecutive) lines of code that are semantically related to each other. This leads to the design and implementation of a deep learning-based vulnerability detection system, called Vulnerability Deep Pecker (VulDeePecker). In order to evaluate VulDeePecker, we present the first vulnerability dataset for deep learning approaches. Experimental results show that VulDeePecker can achieve much fewer false negatives (with reasonable false positives) than other approaches. We further apply VulDeePecker to 3 software products (namely Xen, Seamonkey, and Libav) and detect 4 vulnerabilities, which are not reported in the National Vulnerability Database but were "silently" patched by the vendors when releasing later versions of these products; in contrast, these vulnerabilities are almost entirely missed by the other vulnerability detection systems we experimented with.
DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability Detection
We propose and release a new vulnerable source code dataset. We curate the dataset by crawling security issue websites, extracting vulnerability-fixing commits and source codes from the corresponding projects. Our new dataset contains 18,945 vulnerable functions spanning 150 CWEs and 330,492 non-vulnerable functions extracted from 7,514 commits. Our dataset covers 295 more projects than all previous datasets combined. Combining our new dataset with previous datasets, we present an analysis of the challenges and promising research directions of using deep learning for detecting software vulnerabilities. We study 11 model architectures belonging to 4 families. Our results show that deep learning is still not ready for vulnerability detection, due to high false positive rate, low F1 score, and difficulty of detecting hard CWEs. In particular, we demonstrate an important generalization challenge for the deployment of deep learning-based models. We show that increasing the volume of training data may not further improve the performance of deep learning models for vulnerability detection, but might be useful to improve the generalization ability to unseen projects. We also identify hopeful future research directions. We demonstrate that large language models (LLMs) are a promising research direction for ML-based vulnerability detection, outperforming Graph Neural Networks (GNNs) with code-structure features in our experiments. Moreover, developing source code specific pre-training objectives is a promising research direction to improve the vulnerability detection performance.
LLM Agents can Autonomously Exploit One-day Vulnerabilities
LLMs have becoming increasingly powerful, both in their benign and malicious uses. With the increase in capabilities, researchers have been increasingly interested in their ability to exploit cybersecurity vulnerabilities. In particular, recent work has conducted preliminary studies on the ability of LLM agents to autonomously hack websites. However, these studies are limited to simple vulnerabilities. In this work, we show that LLM agents can autonomously exploit one-day vulnerabilities in real-world systems. To show this, we collected a dataset of 15 one-day vulnerabilities that include ones categorized as critical severity in the CVE description. When given the CVE description, GPT-4 is capable of exploiting 87% of these vulnerabilities compared to 0% for every other model we test (GPT-3.5, open-source LLMs) and open-source vulnerability scanners (ZAP and Metasploit). Fortunately, our GPT-4 agent requires the CVE description for high performance: without the description, GPT-4 can exploit only 7% of the vulnerabilities. Our findings raise questions around the widespread deployment of highly capable LLM agents.
RedCode: Risky Code Execution and Generation Benchmark for Code Agents
With the rapidly increasing capabilities and adoption of code agents for AI-assisted coding, safety concerns, such as generating or executing risky code, have become significant barriers to the real-world deployment of these agents. To provide comprehensive and practical evaluations on the safety of code agents, we propose RedCode, a benchmark for risky code execution and generation: (1) RedCode-Exec provides challenging prompts that could lead to risky code execution, aiming to evaluate code agents' ability to recognize and handle unsafe code. We provide a total of 4,050 risky test cases in Python and Bash tasks with diverse input formats including code snippets and natural text. They covers 25 types of critical vulnerabilities spanning 8 domains (e.g., websites, file systems). We provide Docker environments and design corresponding evaluation metrics to assess their execution results. (2) RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions to generate harmful code or software. Our empirical findings, derived from evaluating three agent frameworks based on 19 LLMs, provide insights into code agents' vulnerabilities. For instance, evaluations on RedCode-Exec show that agents are more likely to reject executing risky operations on the operating system, but are less likely to reject executing technically buggy code, indicating high risks. Risky operations described in natural text lead to a lower rejection rate than those in code format. Additionally, evaluations on RedCode-Gen show that more capable base models and agents with stronger overall coding abilities, such as GPT4, tend to produce more sophisticated and effective harmful software. Our findings highlight the need for stringent safety evaluations for diverse code agents. Our dataset and code are available at https://github.com/AI-secure/RedCode.
A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification
In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.
A Hazard Analysis Framework for Code Synthesis Large Language Models
Codex, a large language model (LLM) trained on a variety of codebases, exceeds the previous state of the art in its capacity to synthesize and generate code. Although Codex provides a plethora of benefits, models that may generate code on such scale have significant limitations, alignment problems, the potential to be misused, and the possibility to increase the rate of progress in technical fields that may themselves have destabilizing impacts or have misuse potential. Yet such safety impacts are not yet known or remain to be explored. In this paper, we outline a hazard analysis framework constructed at OpenAI to uncover hazards or safety risks that the deployment of models like Codex may impose technically, socially, politically, and economically. The analysis is informed by a novel evaluation framework that determines the capacity of advanced code generation techniques against the complexity and expressivity of specification prompts, and their capability to understand and execute them relative to human ability.
Efficient Avoidance of Vulnerabilities in Auto-completed Smart Contract Code Using Vulnerability-constrained Decoding
Auto-completing code enables developers to speed up coding significantly. Recent advances in transformer-based large language model (LLM) technologies have been applied to code synthesis. However, studies show that many of such synthesized codes contain vulnerabilities. We propose a novel vulnerability-constrained decoding approach to reduce the amount of vulnerable code generated by such models. Using a small dataset of labeled vulnerable lines of code, we fine-tune an LLM to include vulnerability labels when generating code, acting as an embedded classifier. Then, during decoding, we deny the model to generate these labels to avoid generating vulnerable code. To evaluate the method, we chose to automatically complete Ethereum Blockchain smart contracts (SCs) as the case study due to the strict requirements of SC security. We first fine-tuned the 6-billion-parameter GPT-J model using 186,397 Ethereum SCs after removing the duplication from 2,217,692 SCs. The fine-tuning took more than one week using ten GPUs. The results showed that our fine-tuned model could synthesize SCs with an average BLEU (BiLingual Evaluation Understudy) score of 0.557. However, many codes in the auto-completed SCs were vulnerable. Using the code before the vulnerable line of 176 SCs containing different types of vulnerabilities to auto-complete the code, we found that more than 70% of the auto-completed codes were insecure. Thus, we further fine-tuned the model on other 941 vulnerable SCs containing the same types of vulnerabilities and applied vulnerability-constrained decoding. The fine-tuning took only one hour with four GPUs. We then auto-completed the 176 SCs again and found that our approach could identify 62% of the code to be generated as vulnerable and avoid generating 67% of them, indicating the approach could efficiently and effectively avoid vulnerabilities in the auto-completed code.
Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science
Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines. While their capabilities are promising, they also introduce novel vulnerabilities that demand careful consideration for safety. However, there exists a notable gap in the literature, as there has been no comprehensive exploration of these vulnerabilities. This position paper fills this gap by conducting a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures. We begin by providing a comprehensive overview of the potential risks inherent to scientific LLM agents, taking into account user intent, the specific scientific domain, and their potential impact on the external environment. Then, we delve into the origins of these vulnerabilities and provide a scoping review of the limited existing works. Based on our analysis, we propose a triadic framework involving human regulation, agent alignment, and an understanding of environmental feedback (agent regulation) to mitigate these identified risks. Furthermore, we highlight the limitations and challenges associated with safeguarding scientific agents and advocate for the development of improved models, robust benchmarks, and comprehensive regulations to address these issues effectively.
SmartLLM: Smart Contract Auditing using Custom Generative AI
Smart contracts are essential to decentralized finance (DeFi) and blockchain ecosystems but are increasingly vulnerable to exploits due to coding errors and complex attack vectors. Traditional static analysis tools and existing vulnerability detection methods often fail to address these challenges comprehensively, leading to high false-positive rates and an inability to detect dynamic vulnerabilities. This paper introduces SmartLLM, a novel approach leveraging fine-tuned LLaMA 3.1 models with Retrieval-Augmented Generation (RAG) to enhance the accuracy and efficiency of smart contract auditing. By integrating domain-specific knowledge from ERC standards and employing advanced techniques such as QLoRA for efficient fine-tuning, SmartLLM achieves superior performance compared to static analysis tools like Mythril and Slither, as well as zero-shot large language model (LLM) prompting methods such as GPT-3.5 and GPT-4. Experimental results demonstrate a perfect recall of 100% and an accuracy score of 70%, highlighting the model's robustness in identifying vulnerabilities, including reentrancy and access control issues. This research advances smart contract security by offering a scalable and effective auditing solution, supporting the secure adoption of decentralized applications.
Hard No-Box Adversarial Attack on Skeleton-Based Human Action Recognition with Skeleton-Motion-Informed Gradient
Recently, methods for skeleton-based human activity recognition have been shown to be vulnerable to adversarial attacks. However, these attack methods require either the full knowledge of the victim (i.e. white-box attacks), access to training data (i.e. transfer-based attacks) or frequent model queries (i.e. black-box attacks). All their requirements are highly restrictive, raising the question of how detrimental the vulnerability is. In this paper, we show that the vulnerability indeed exists. To this end, we consider a new attack task: the attacker has no access to the victim model or the training data or labels, where we coin the term hard no-box attack. Specifically, we first learn a motion manifold where we define an adversarial loss to compute a new gradient for the attack, named skeleton-motion-informed (SMI) gradient. Our gradient contains information of the motion dynamics, which is different from existing gradient-based attack methods that compute the loss gradient assuming each dimension in the data is independent. The SMI gradient can augment many gradient-based attack methods, leading to a new family of no-box attack methods. Extensive evaluation and comparison show that our method imposes a real threat to existing classifiers. They also show that the SMI gradient improves the transferability and imperceptibility of adversarial samples in both no-box and transfer-based black-box settings.
Deep Learning Model Security: Threats and Defenses
Deep learning has transformed AI applications but faces critical security challenges, including adversarial attacks, data poisoning, model theft, and privacy leakage. This survey examines these vulnerabilities, detailing their mechanisms and impact on model integrity and confidentiality. Practical implementations, including adversarial examples, label flipping, and backdoor attacks, are explored alongside defenses such as adversarial training, differential privacy, and federated learning, highlighting their strengths and limitations. Advanced methods like contrastive and self-supervised learning are presented for enhancing robustness. The survey concludes with future directions, emphasizing automated defenses, zero-trust architectures, and the security challenges of large AI models. A balanced approach to performance and security is essential for developing reliable deep learning systems.